A188775 Numbers k such that Sum_{j=1..k} j^j == -1 (mod k).
1, 2, 3, 6, 14, 42, 46, 1806, 2185, 4758, 5266, 10895, 24342, 26495, 44063, 52793, 381826, 543026, 547311, 805002
Offset: 1
Examples
6 is a term because 1^1 + 2^2 + 3^3 + 4^4 + 5^5 + 6^6 = 50069 and 50069 + 1 = 6 * 8345. - _Bernard Schott_, Feb 03 2019
Crossrefs
Programs
-
Maple
isA188775 := proc(n) add( modp(k &^ k,n),k=1..n) ; if modp(%,n) = n-1 then true; else false; end if; end proc: for n from 1 do if isA188775(n) then printf("%d\n",n) ; end if; end do: # R. J. Mathar, Apr 10 2011
-
Mathematica
Union@Table[If[Mod[Sum[PowerMod[i,i,n],{i,1,n}],n]==n-1,Print[n];n],{n,1,10000}]
-
PARI
f(n)=lift(sum(k=1,n,Mod(k,n)^k)); for(n=1,10^6,if(f(n)==n-1,print1(n,", "))) \\ Joerg Arndt, Apr 10 2011
-
PARI
m=0;for(n=1,1000,m=m+n^n;if((m+1)%n==0,print1(n,", "))) \\ Jinyuan Wang, Feb 04 2019
-
Python
sum = 0 for n in range(10000): sum += n**n if sum % (n+1) == 0: print(n+1, end=',') # Alex Ratushnyak, May 13 2013
Extensions
a(12)-a(16) from Joerg Arndt, Apr 10 2011
a(17)-a(20) from Lars Blomberg, May 10 2011
Comments