A001923
a(n) = Sum_{k=1..n} k^k.
Original entry on oeis.org
0, 1, 5, 32, 288, 3413, 50069, 873612, 17650828, 405071317, 10405071317, 295716741928, 9211817190184, 312086923782437, 11424093749340453, 449317984130199828, 18896062057839751444, 846136323944176515621
Offset: 0
- József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, p. 308.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=0..100
- Mohammad K. Azarian, On the hyperfactorial function, hypertriangular function and the discriminants of certain polynomials, Int. J. Pure Appl. Math., Vol. 36, No. 2 (2007), pp. 251-257.
- Andrew Cusumano, Problem H-656, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 45, No. 2 (2007), p. 187; A Sequence Tending To e, Solution to Problem H-656, ibid., Vol. 46-47, No. 3 (2008/2009), pp. 285-287.
- G. W. Wishard (proposer) and F. Underwood (solution), Problem 4155: Bound for a Finite Sum, Amer. Math. Monthly, Vol. 53, No. 8 (1946), pp. 471-473.
-
a001923 n = a001923_list !! n
a001923_list = scanl (+) 0 $ tail a000312_list
-- Reinhard Zumkeller, Jul 11 2014
-
Accumulate[Join[{0},Table[k^k,{k,20}]]] (* Harvey P. Dale, Feb 11 2015 *)
-
for(n=1,20,print1(sum(x=1,n,x^x), ", ")) \\ Jorge Coveiro, Dec 24 2004
-
# generates initial segment of sequence
from itertools import accumulate
def f(k): return 0 if k == 0 else k**k
def aupton(nn): return list(accumulate(f(k) for k in range(nn+1)))
print(aupton(17)) # Michael S. Branicky, Feb 12 2022
A128981
Numbers k such that k divides Sum_{j=1..k} j^j = A001923(k).
Original entry on oeis.org
1, 4, 17, 19, 148, 1577, 3564, 4388, 5873, 6639, 8579, 62500, 376636, 792949, 996044, 1174065, 3333551, 5179004, 7516003
Offset: 1
-
a:=0:
for n from 1 to 2000 do
a:=a+n^n:
if a mod n=0 then
print(n);
fi;
od: # Revised program from R. J. Mathar, Jun 18 2015
-
f=0; Do[ f=f+k^k; If[ IntegerQ[f/k], Print[k] ], {k,1,6639} ]
-
for(n=1,10^4, s=sum(i=1,n,Mod(i,n)^i); if(!Mod(s,n), print1(n,", "))) \\ Derek Orr, Jun 18 2015
-
from itertools import accumulate, count, islice
def A128981_gen(): # generator of terms
yield 1
for i, j in enumerate(accumulate(k**k for k in count(1)),start=2):
if j % i == 0:
yield i
A128981_list = list(islice(A128981_gen(),10)) # Chai Wah Wu, Jun 18 2022
A349886
a(n) = Sum_{k=0..n} k^(k*n).
Original entry on oeis.org
1, 2, 18, 19749, 4295498995, 298024323402930834, 10314425729813391637014599924, 256923578002288684397369021397408936103993, 6277101735598268377660667072561845282166297358613176925573
Offset: 0
-
Table[1 + Sum[k^(k*n), {k, 1, n}], {n, 0, 10}] (* Vaclav Kotesovec, Dec 04 2021 *)
a[n_] := Sum[If[k == 0, 1, k^(k*n)], {k, 0, n}]; Array[a, 9, 0] (* Amiram Eldar, Dec 04 2021 *)
-
a(n) = sum(k=0, n, k^(k*n));
-
my(N=10, x='x+O('x^N)); Vec(sum(k=0, N, k^k^2*x^k/(1-k^k*x)))
A073826
Primes of the form Sum_{k=1..n} k^k, i.e., primes in A001923.
Original entry on oeis.org
5, 3413, 50069, 10405071317, 208492413443704093346554910065262730566475781
Offset: 1
a(1) = 5 = 1^1 + 2^2 is the smallest prime of the form A001923(n) = sum_{k=1..n} k^k, namely for n = 2 = A073825(1).
a(2) = sum_{k=1..A073825(2)} k^k = 1^1 + 2^2 + 3^3 + 4^4 + 5^5 = 3413, a prime, so 3413 is in this sequence (A073825(2) = 5).
A188775
Numbers k such that Sum_{j=1..k} j^j == -1 (mod k).
Original entry on oeis.org
1, 2, 3, 6, 14, 42, 46, 1806, 2185, 4758, 5266, 10895, 24342, 26495, 44063, 52793, 381826, 543026, 547311, 805002
Offset: 1
6 is a term because 1^1 + 2^2 + 3^3 + 4^4 + 5^5 + 6^6 = 50069 and 50069 + 1 = 6 * 8345. - _Bernard Schott_, Feb 03 2019
-
isA188775 := proc(n) add( modp(k &^ k,n),k=1..n) ; if modp(%,n) = n-1 then true; else false; end if; end proc:
for n from 1 do if isA188775(n) then printf("%d\n",n) ; end if; end do: # R. J. Mathar, Apr 10 2011
-
Union@Table[If[Mod[Sum[PowerMod[i,i,n],{i,1,n}],n]==n-1,Print[n];n],{n,1,10000}]
-
f(n)=lift(sum(k=1,n,Mod(k,n)^k));
for(n=1,10^6,if(f(n)==n-1,print1(n,", "))) \\ Joerg Arndt, Apr 10 2011
-
m=0;for(n=1,1000,m=m+n^n;if((m+1)%n==0,print1(n,", "))) \\ Jinyuan Wang, Feb 04 2019
-
sum = 0
for n in range(10000):
sum += n**n
if sum % (n+1) == 0:
print(n+1, end=',')
# Alex Ratushnyak, May 13 2013
A349962
a(n) = Sum_{k=0..n} (2*k)^k.
Original entry on oeis.org
1, 3, 19, 235, 4331, 104331, 3090315, 108503819, 4403471115, 202762761483, 10442762761483, 594761064172811, 37115108500229387, 2518267981703965963, 184577387811646500107, 14533484387811646500107, 1223459304002440821206283, 109651494909968373175414027
Offset: 0
-
a[n_] := Sum[If[k == 0, 1, (2*k)^k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Dec 07 2021 *)
-
a(n) = sum(k=0, n, (2*k)^k);
A108397
Sums of rows of the triangle in A108396.
Original entry on oeis.org
0, 2, 10, 66, 692, 9780, 167982, 3362828, 76695880, 1961316270, 55555555610, 1726135607262, 58359930206844, 2132745542253872, 83767436069591302, 3518790190560477240, 157412216095654840592, 7471013615160978901626
Offset: 0
A326501
a(n) = Sum_{k=0..n} (-k)^k.
Original entry on oeis.org
1, 0, 4, -23, 233, -2892, 43764, -779779, 15997437, -371423052, 9628576948, -275683093663, 8640417354593, -294234689237660, 10817772136320356, -427076118244539019, 18019667955465012597, -809220593930871751580, 38537187481365665823844
Offset: 0
-
a:= proc(n) option remember; `if`(n<0, 0, (-n)^n+a(n-1)) end:
seq(a(n), n=0..23); # Alois P. Heinz, Sep 12 2019
-
RecurrenceTable[{a[0] == 1, a[n] == a[n-1] + (-n)^n}, a, {n, 0, 23}] (* Jean-François Alcover, Nov 27 2020 *)
-
{a(n) = sum(k=0, n, (-k)^k)}
-
from itertools import accumulate, count, islice
def A326501_gen(): # generator of terms
yield from accumulate((-k)**k for k in count(0))
A326501_list = list(islice(A326501_gen(),10)) # Chai Wah Wu, Jun 18 2022
A350008
a(n) = Sum_{k=0..n} k^(2*k).
Original entry on oeis.org
1, 2, 18, 747, 66283, 9831908, 2186614244, 680409687093, 282155386397749, 150376790683396870, 100150376790683396870, 81502899763630444510191, 79578350103154474577951727, 91812908543371771132977567736
Offset: 0
-
a[n_] := Sum[If[k == 0, 1, k^(2*k)], {k, 0, n}]; Array[a, 14, 0] (* Amiram Eldar, Dec 08 2021 *)
-
a(n) = sum(k=0, n, k^(2*k));
A353009
a(n) = Sum_{k=0..floor(n/2)} (n-2*k)^(n-2*k).
Original entry on oeis.org
1, 1, 5, 28, 261, 3153, 46917, 826696, 16824133, 388247185, 10016824133, 285699917796, 8926117272389, 303160806510049, 11120932942830405, 438197051187369424, 18457865006652382021, 827678458937524133601, 39364865940303189957445
Offset: 0
-
a[n_] := Sum[If[2*k == n, 1, (n - 2*k)^(n - 2*k)], {k, 0, Floor[n/2]}]; Array[a, 20, 0] (* Amiram Eldar, Apr 16 2022 *)
-
a(n) = sum(k=0, n\2, (n-2*k)^(n-2*k));
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k)/(1-x^2))
Showing 1-10 of 15 results.
Comments