cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A001923 a(n) = Sum_{k=1..n} k^k.

Original entry on oeis.org

0, 1, 5, 32, 288, 3413, 50069, 873612, 17650828, 405071317, 10405071317, 295716741928, 9211817190184, 312086923782437, 11424093749340453, 449317984130199828, 18896062057839751444, 846136323944176515621
Offset: 0

Views

Author

Keywords

Comments

Starting from the second term, 1, the terms could be described as the special case (n=1; j=1) of the following general formula: a(n) = Sum [(n + k - 1)]^(k) n=1; j=1; i=1,2,3,...,... For (n=0; j=1) the formula yields A062815 n=0; j=1; i=2,3,4,... For (n=2; j=0) we get A060946 and for (n=3; j=0) A117887. - Alexander R. Povolotsky, Sep 01 2007
From Luan Alberto Ferreira, Aug 01 2017: (Start)
If n == 0 or 3 (mod 4), then a(n) == 0 (mod 4).
If n == 0, 4, 7, 14, 15 or 17 (mod 18), then a(n) == 0 (mod 3). (End)
Called the hypertriangular function by M. K. Azarian. - Light Ediand, Nov 19 2021

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, p. 308.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A073825, A062970 (another version).

Programs

  • Haskell
    a001923 n = a001923_list !! n
    a001923_list = scanl (+) 0 $ tail a000312_list
    -- Reinhard Zumkeller, Jul 11 2014
    
  • Mathematica
    Accumulate[Join[{0},Table[k^k,{k,20}]]] (* Harvey P. Dale, Feb 11 2015 *)
  • PARI
    for(n=1,20,print1(sum(x=1,n,x^x), ", ")) \\ Jorge Coveiro, Dec 24 2004
    
  • Python
    # generates initial segment of sequence
    from itertools import accumulate
    def f(k): return 0 if k == 0 else k**k
    def aupton(nn): return list(accumulate(f(k) for k in range(nn+1)))
    print(aupton(17)) # Michael S. Branicky, Feb 12 2022

Formula

a(n) = A062970(n) - 1.
a(n+1)/a(n) > e*n and a(n+1)/a(n) is asymptotic to e*n. - Benoit Cloitre, Sep 29 2002
For n > 0: a(n) = a(n-1) + A000312(n). - Reinhard Zumkeller, Jul 11 2014
Limit_{n->oo} (a(n+2)/a(n+1) - a(n+1)/a(n)) = e (Cusumano, 2007). - Amiram Eldar, Jan 03 2022

A128981 Numbers k such that k divides Sum_{j=1..k} j^j = A001923(k).

Original entry on oeis.org

1, 4, 17, 19, 148, 1577, 3564, 4388, 5873, 6639, 8579, 62500, 376636, 792949, 996044, 1174065, 3333551, 5179004, 7516003
Offset: 1

Views

Author

Alexander Adamchuk, Apr 29 2007

Keywords

Comments

a(20) > 10^7. - Hiroaki Yamanouchi, Aug 25 2015

Crossrefs

Programs

  • Maple
    a:=0:
    for n from 1 to 2000 do
        a:=a+n^n:
        if a mod n=0 then
            print(n);
        fi;
    od: # Revised program from R. J. Mathar, Jun 18 2015
  • Mathematica
    f=0; Do[ f=f+k^k; If[ IntegerQ[f/k], Print[k] ], {k,1,6639} ]
  • PARI
    for(n=1,10^4, s=sum(i=1,n,Mod(i,n)^i); if(!Mod(s,n), print1(n,", "))) \\ Derek Orr, Jun 18 2015
    
  • Python
    from itertools import accumulate, count, islice
    def A128981_gen(): # generator of terms
        yield 1
        for i, j in enumerate(accumulate(k**k for k in count(1)),start=2):
            if j % i == 0:
                yield i
    A128981_list = list(islice(A128981_gen(),10)) # Chai Wah Wu, Jun 18 2022

Extensions

a(11) and a(12) from Jon E. Schoenfield, May 09 2007
a(13) = 376636 from Alexander Adamchuk, May 03 2010
a(14)-a(16) from Lars Blomberg, May 10 2011
a(17) from Giovanni Resta, Jul 13 2015
a(18)-a(19) from Hiroaki Yamanouchi, Aug 25 2015

A349886 a(n) = Sum_{k=0..n} k^(k*n).

Original entry on oeis.org

1, 2, 18, 19749, 4295498995, 298024323402930834, 10314425729813391637014599924, 256923578002288684397369021397408936103993, 6277101735598268377660667072561845282166297358613176925573
Offset: 0

Views

Author

Seiichi Manyama, Dec 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[1 + Sum[k^(k*n), {k, 1, n}], {n, 0, 10}] (* Vaclav Kotesovec, Dec 04 2021 *)
    a[n_] := Sum[If[k == 0, 1, k^(k*n)], {k, 0, n}]; Array[a, 9, 0] (* Amiram Eldar, Dec 04 2021 *)
  • PARI
    a(n) = sum(k=0, n, k^(k*n));
    
  • PARI
    my(N=10, x='x+O('x^N)); Vec(sum(k=0, N, k^k^2*x^k/(1-k^k*x)))

Formula

G.f.: Sum_{k>=0} k^(k^2) * x^k/(1 - k^k * x).
a(n) ~ n^(n^2). - Vaclav Kotesovec, Dec 04 2021

A073826 Primes of the form Sum_{k=1..n} k^k, i.e., primes in A001923.

Original entry on oeis.org

5, 3413, 50069, 10405071317, 208492413443704093346554910065262730566475781
Offset: 1

Views

Author

Rick L. Shepherd, Aug 13 2002

Keywords

Comments

a(3) = A001923(10) = 10405071317 and the 45-digit a(4) = A001923(30) have been certified prime with Primo. Any additional terms are too big to include here.
The next term would have over 20000 digits; see A073825 for more information and updates.

Examples

			a(1) = 5 = 1^1 + 2^2 is the smallest prime of the form A001923(n) = sum_{k=1..n} k^k, namely for n = 2 = A073825(1).
a(2) = sum_{k=1..A073825(2)} k^k = 1^1 + 2^2 + 3^3 + 4^4 + 5^5 = 3413, a prime, so 3413 is in this sequence (A073825(2) = 5).
		

Crossrefs

Cf. A073825 (corresponding n), A001923 (sum_{k=1..n} k^k).
Cf. A122166 (indices of primes in A062970 (sum_{k=0..n} k^k)).

Programs

  • Mathematica
    Select[s=0;Table[s+=n^n,{n,5!}],PrimeQ[ # ]&] (* Vladimir Joseph Stephan Orlovsky, May 30 2010 *)
  • PARI
    s=0; for(k=1,1320, s=s+k^k; if(isprime(s), print1(s,",")))

Formula

a(j) = A001923(A073825(j)) = sum_{k=1..A073825(j)} k^k.
Intersection of A001923 with A000040.

Extensions

Edited by M. F. Hasler, Mar 22 2008
Typo in comment corrected by Jonathan Vos Post, Mar 23 2008

A188775 Numbers k such that Sum_{j=1..k} j^j == -1 (mod k).

Original entry on oeis.org

1, 2, 3, 6, 14, 42, 46, 1806, 2185, 4758, 5266, 10895, 24342, 26495, 44063, 52793, 381826, 543026, 547311, 805002
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A001923(k) == -1 (mod k).
a(21) > 10^7. - Hiroaki Yamanouchi, Aug 25 2015
Numbers k such that k divides A062970(k). - Jianing Song, Feb 03 2019

Examples

			6 is a term because 1^1 + 2^2 + 3^3 + 4^4 + 5^5 + 6^6 = 50069 and 50069 + 1 = 6 * 8345. - _Bernard Schott_, Feb 03 2019
		

Crossrefs

Cf. A128981 (sum == 0 (mod n)), A188776 (sum == 1 (mod n)).
Cf. A057245.

Programs

  • Maple
    isA188775 := proc(n) add( modp(k &^ k,n),k=1..n) ; if modp(%,n) = n-1 then true; else false; end if; end proc:
    for n from 1 do if isA188775(n) then printf("%d\n",n) ; end if; end do: # R. J. Mathar, Apr 10 2011
  • Mathematica
    Union@Table[If[Mod[Sum[PowerMod[i,i,n],{i,1,n}],n]==n-1,Print[n];n],{n,1,10000}]
  • PARI
    f(n)=lift(sum(k=1,n,Mod(k,n)^k));
    for(n=1,10^6,if(f(n)==n-1,print1(n,", "))) \\ Joerg Arndt, Apr 10 2011
    
  • PARI
    m=0;for(n=1,1000,m=m+n^n;if((m+1)%n==0,print1(n,", "))) \\ Jinyuan Wang, Feb 04 2019
    
  • Python
    sum = 0
    for n in range(10000):
        sum += n**n
        if sum % (n+1) == 0:
            print(n+1, end=',')
    # Alex Ratushnyak, May 13 2013

Extensions

a(12)-a(16) from Joerg Arndt, Apr 10 2011
a(17)-a(20) from Lars Blomberg, May 10 2011

A349962 a(n) = Sum_{k=0..n} (2*k)^k.

Original entry on oeis.org

1, 3, 19, 235, 4331, 104331, 3090315, 108503819, 4403471115, 202762761483, 10442762761483, 594761064172811, 37115108500229387, 2518267981703965963, 184577387811646500107, 14533484387811646500107, 1223459304002440821206283, 109651494909968373175414027
Offset: 0

Views

Author

Seiichi Manyama, Dec 07 2021

Keywords

Comments

Partial sums of A062971.

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[If[k == 0, 1, (2*k)^k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Dec 07 2021 *)
  • PARI
    a(n) = sum(k=0, n, (2*k)^k);

Formula

a(n) ~ 2^n * n^n. - Vaclav Kotesovec, Dec 07 2021

A108397 Sums of rows of the triangle in A108396.

Original entry on oeis.org

0, 2, 10, 66, 692, 9780, 167982, 3362828, 76695880, 1961316270, 55555555610, 1726135607262, 58359930206844, 2132745542253872, 83767436069591302, 3518790190560477240, 157412216095654840592, 7471013615160978901626
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 02 2005

Keywords

Crossrefs

Programs

  • Haskell
    a108397 0 = 0
    a108397 1 = 2
    a108397 n = n * (n^(n+1) + n^2 - 2) `div` (2 * (n-1))
    -- Reinhard Zumkeller, Mar 31 2015

Formula

a(n) = n*(n^(n+1) + n^2 - 2) / (2*(n-1)) for n>1.

A326501 a(n) = Sum_{k=0..n} (-k)^k.

Original entry on oeis.org

1, 0, 4, -23, 233, -2892, 43764, -779779, 15997437, -371423052, 9628576948, -275683093663, 8640417354593, -294234689237660, 10817772136320356, -427076118244539019, 18019667955465012597, -809220593930871751580, 38537187481365665823844
Offset: 0

Views

Author

Seiichi Manyama, Sep 12 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, (-n)^n+a(n-1)) end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 12 2019
  • Mathematica
    RecurrenceTable[{a[0] == 1, a[n] == a[n-1] + (-n)^n}, a, {n, 0, 23}] (* Jean-François Alcover, Nov 27 2020 *)
  • PARI
    {a(n) = sum(k=0, n, (-k)^k)}
    
  • Python
    from itertools import accumulate, count, islice
    def A326501_gen(): # generator of terms
        yield from accumulate((-k)**k for k in count(0))
    A326501_list = list(islice(A326501_gen(),10)) # Chai Wah Wu, Jun 18 2022

Formula

a(n) = 1 + (-1)^n * A001099(n).

A350008 a(n) = Sum_{k=0..n} k^(2*k).

Original entry on oeis.org

1, 2, 18, 747, 66283, 9831908, 2186614244, 680409687093, 282155386397749, 150376790683396870, 100150376790683396870, 81502899763630444510191, 79578350103154474577951727, 91812908543371771132977567736
Offset: 0

Views

Author

Seiichi Manyama, Dec 08 2021

Keywords

Comments

Partial sums of A062206.

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[If[k == 0, 1, k^(2*k)], {k, 0, n}]; Array[a, 14, 0] (* Amiram Eldar, Dec 08 2021 *)
  • PARI
    a(n) = sum(k=0, n, k^(2*k));

Formula

a(n) ~ n^(2*n). - Vaclav Kotesovec, Dec 08 2021

A353009 a(n) = Sum_{k=0..floor(n/2)} (n-2*k)^(n-2*k).

Original entry on oeis.org

1, 1, 5, 28, 261, 3153, 46917, 826696, 16824133, 388247185, 10016824133, 285699917796, 8926117272389, 303160806510049, 11120932942830405, 438197051187369424, 18457865006652382021, 827678458937524133601, 39364865940303189957445
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[If[2*k == n, 1, (n - 2*k)^(n - 2*k)], {k, 0, Floor[n/2]}]; Array[a, 20, 0] (* Amiram Eldar, Apr 16 2022 *)
  • PARI
    a(n) = sum(k=0, n\2, (n-2*k)^(n-2*k));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k)/(1-x^2))

Formula

G.f.: ( Sum_{k>=0} (k * x)^k )/(1 - x^2).
a(2*n-1) = A061787(n), a(2*n) = A061788(n) + 1. - Seiichi Manyama, Apr 17 2022
Showing 1-10 of 15 results. Next