A062845 When expressed in base 2 and then interpreted in base 3, is a multiple of the original number.
0, 1, 5, 6, 10, 12, 30, 36, 60, 120, 180, 215, 216, 252, 360, 430, 432, 1080, 2730, 3276, 13710, 14724, 16380, 20520, 24624, 24840, 27125, 27420, 32760, 38880, 48606, 49091, 54250, 54840, 97212, 98280
Offset: 1
Examples
30 = 11110_2; 11110_3 = 120 = 4*30.
Links
- Dimiter Skordev, Table of n, a(n) for n = 1..122 (terms < 10^15, terms 1..36 from Erich Friedman, 37..111 from Dimiter Skordev, 112..120 from Giovanni Resta)
- Dimiter Skordev, Pascal program
- Dimiter Skordev, Python script
Programs
-
Magma
[0] cat [k:k in [1..100000]|Seqint(Intseq(Seqint(Intseq(k, 2))),3) mod k eq 0]; // Marius A. Burtea, Dec 29 2019
-
Mathematica
{0} ~Join~ Select[Range[10^5], Mod[ FromDigits[ IntegerDigits[#, 2], 3], #] == 0 &] (* Giovanni Resta, Dec 10 2019 *)
-
PARI
isok(m) = (m==0) || fromdigits(digits(m, 2), 3) % m == 0; \\ Michel Marcus, Feb 15 2020
-
Python
def BaseUp(n,b): up, b1 = 0, 1 while n > 0: up, b1, n = up+(n%b)*b1, b1*(b+1), n//b return up n, k = 1, 0 print(1,0) while n < 35: n, k = n+1, k+1 while BaseUp(k,2)%k != 0: k = k+1 print(n,k) # A.H.M. Smeets, Mar 31 2020
Comments