A062870 Number of permutations of degree n with greatest sum of distances.
1, 1, 1, 3, 4, 20, 36, 252, 576, 5184, 14400, 158400, 518400, 6739200, 25401600, 381024000, 1625702400, 27636940800, 131681894400, 2501955993600, 13168189440000, 276531978240000, 1593350922240000, 36647071211520000, 229442532802560000, 5736063320064000000
Offset: 0
Keywords
Examples
(4,3,1,2) has distances (3,1,2,2), sum is 8 and there are 3 other permutations of degree 4 {3, 4, 1, 2}, {3, 4, 2, 1}, {4, 3, 2, 1} with this sum which is the maximum possible.
Links
- Georg Fischer, Table of n, a(n) for n = 0..506 (first 301 terms from _Alois P. Heinz_)
- Max Alekseyev, Proof of conjecture
- T. Kyle Petersen and Bridget Eileen Tenner, The depth of a permutation, arXiv:1202.4765 [math.CO], 2012.
- T. Kyle Petersen and Bridget Eileen Tenner, The depth of a permutation, Journal of Combinatorics 6 (2015), pp. 145--178.
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, 1+n*(n-1), (n*((n-1)^2*(3*n-4)*a(n-2)-4*a(n-1)))/(4*(n-1)*(3*n-7))) end: seq(a(n), n=0..30); # Alois P. Heinz, Jan 16 2014
-
Mathematica
a[n_?EvenQ] := (n/2)!^2; a[n_?OddQ] := n*((n-1)/2)!^2; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 15 2015 *)
-
PARI
for(k=0,20,print1((2*k+1)*k!^2","(k+1)!^2",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Dec 27 2007
Formula
a(n) = (n/2)!^2 if n is even else n*((n-1)/2)!^2, cf. A092186. - Conjectured by Vladeta Jovovic, Aug 21 2007; proved (see the link) by Max Alekseyev, Aug 21 2007
a(n) = A062869(n,floor(n^2/4)) for n>=1. - Alois P. Heinz, Oct 02 2022
Extensions
a(10)-a(14) from Hugo Pfoertner, Sep 23 2004
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Dec 27 2007
Comments