cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A083408 Squares which can be expressed as the product of a number and its reversal in at least two different ways.

Original entry on oeis.org

63504, 435600, 6350400, 7683984, 16240900, 25401600, 43560000, 66585600, 420332004, 558471424, 635040000, 647804304, 726949444, 768398400, 782432784, 1067328900, 1624090000, 1897473600, 2341011456, 2540160000, 4356000000, 6658560000, 42033200400, 50860172484, 52587662400
Offset: 1

Views

Author

Shyam Sunder Gupta, Jun 07 2003

Keywords

Comments

Union of A083406 and A083407. - Lekraj Beedassy, Apr 23 2006

Examples

			63504 = 252 * 252 = 144 * 441,
1239016098321 = 1113111 * 1113111 = 1022121 * 1212201, etc.
635040000 = 144 * 4410000 = 252 * 2520000 = 441 * 1440000. - _David A. Corneth_, Mar 22 2019
		

References

  • S. S. Gupta, EPRNs, Science Today, Feb. 1987, India.

Crossrefs

Cf. A062917, A066531, A083406 (even), A083407 (odd), A070760, A117281 (palindromic square roots), A206642 (non-palindromic square roots), A325150 (products in exactly two different ways), A307019 (products in exactly three different ways).

Programs

  • PARI
    is(n) = {if(!issquare(n), return(0)); my(d = divisors(n), t = 0); forstep(i = #d, #d \ 2 + 1, -1, revd = fromdigits(Vecrev(digits(d[i]))); if(revd * d[i] == n, t++; if(t >= 2, return(1)); ) ); 0 } \\ David A. Corneth, Mar 21 2019

Extensions

Corrected and extended by Hans Havermann, Feb 11 2012
a(21)-a(25) from David A. Corneth, Mar 21 2019
Definition corrected by N. J. A. Sloane, Aug 01 2019

A076750 Squares which are the product of a non-palindrome and its reversal, where leading zeros are not allowed.

Original entry on oeis.org

63504, 162409, 254016, 435600, 665856, 7683984, 10673289, 18974736, 420332004, 525876624, 558471424, 647804304, 726949444, 782432784, 961186009, 1086823089, 1235030449, 1681328016, 1932129936, 2103506496, 2341011456, 2363515456, 3051678564, 3413130084, 4485784576
Offset: 1

Views

Author

Jason Earls, Nov 12 2002

Keywords

Examples

			One way: 10673289 = 3267^2 = 1089*9801.
From _Bernard Schott_, Apr 12 2019: (Start)
Two ways:
  7683984 = 2772^2 = 2772*2772 = 1584*4851;
   435600 =  660^2 =  528*825  = 6600*66. (End)
		

Crossrefs

Subsequence of A325148.

Extensions

More terms from Chai Wah Wu, Apr 11 2019

A322835 Non-palindromic numbers n such that n * reverse(n) is a square and n and reverse(n) do not have the same number of digits.

Original entry on oeis.org

100, 200, 300, 400, 500, 600, 700, 800, 900, 1100, 2200, 3300, 4400, 5500, 6600, 7700, 8800, 9900, 10000, 10100, 11100, 12100, 13100, 14100, 14400, 15100, 16100, 16900, 17100, 18100, 19100, 20000, 20200, 21200, 22200, 23200, 24200, 25200, 26200, 27200, 28200, 28800, 29200, 30000, 30300
Offset: 1

Views

Author

Bernard Schott, Jan 02 2019

Keywords

Comments

The terms in this sequence are mostly of the form m * 100^k with k >= 1, but this condition is not sufficient.
A062917 U {this sequence} = A070760, with empty intersection.
There are exactly four families of such integers here: numbers of the forms A002113(j)*100^k, A035090(j)*100^k, A082994(j)*100^k and A323061(j)*10^(2k+1).
All terms are multiples of 10, but they are not necessarily multiples of 100. The first multiple of 10 that is not a multiple of 100 is a(755) = 5449680, and there are only 30 such terms among the first 10000 terms. - Chai Wah Wu, Jan 07 2019

Examples

			Example for family 1: 200 * 2 = 400 = 20^2;
Example for family 2: 14400 * 441 = 120^2 * 21^2 = 2520^2;
Example for family 3: 28800 * 882 = (2 * 120^2) * (2 * 21^2) = 5040^2.
Example for family 4: 5449680 * 869445 = 2176740^2. - _Chai Wah Wu_, Jan 07 2019
		

Crossrefs

Programs

  • Mathematica
    Select[100 Range@303, And[! PalindromeQ@ #, IntegerQ@ Sqrt[#1 #2], UnsameQ @@ IntegerLength@ {#1, #2}] & @@ {#, IntegerReverse@ #} &] (* Michael De Vlieger, Jan 03 2019 *)
  • PARI
    is(n) = n % 10 == 0 && issquare(n * fromdigits(Vecrev(digits(n)))) \\ David A. Corneth, Jan 03 2019

A070760 Numbers k such that k*rev(k) is a square different from k^2, where rev=A004086, decimal reversal.

Original entry on oeis.org

100, 144, 169, 200, 288, 300, 400, 441, 500, 528, 600, 700, 768, 800, 825, 867, 882, 900, 961, 1089, 1100, 1584, 2178, 2200, 3300, 4400, 4851, 5500, 6600, 7700, 8712, 8800, 9801, 9900, 10000, 10100, 10404, 10609, 10989
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2002

Keywords

Comments

If k is a palindrome (A002113), then 100*k is a term. If k is a term, then 100*k is a term. - Chai Wah Wu, Mar 31 2018
From Bernard Schott, Jan 02-10 2019: (Start)
There are six different families of integers in this sequence.
1) If k and rev(k) do not have the same number of digits:
All these integers are in A322835 where the first four families are explained and detailed.
Family 1: A002113(j) * 100^k
Family 2: A035090(j) * 100^k
Family 3: A082994(j) * 100^k
Family 4: A323061(j) * 10^(2k+1)
2) If k and rev(k) have the same number of digits.
All these integers are in A062917.
Family 5: Non-palindromic squares whose reverse is also square. These integers are in A035090.
Family 6: Non-palindromic numbers k, such that k * rev(k) is a square, with k and rev(k) not both square. These integers are in A082994.
3) Relationships between these different sequences.
A035090 Union A082994 = A062917 with empty intersection, and,
A062917 Union A322835 = {This sequence} with empty intersection. (End)

Examples

			a(2)=144: rev(144)=441, 144*441=(12^2)*(21^2)=(12*21)^2 and 144<>12*21=252.
From _Bernard Schott_, Jan 02 2019: (Start)
Example for family 1: 200 * 2 = 400 = 20^2
Example for family 2: 14400 * 441 = 120^2 * 21^2 = 2520^2
Example for family 3: 28800 * 882 = (2 * 120^2) * (2 * 21^2) = 5040^2
Example for family 4: 5449680 * 869445 = 2176740^2
Example for family 5: 169 * 961 = 13^2 * 31^2 = 403^2
Example for family 6: 528 * 825 = (33 * 4^2) * (33 * 5^2) = 660^2. (End)
		

Crossrefs

Programs

  • Haskell
    a070760 n = a070760_list !! (n-1)
    a070760_list = [x | x <- [0..], let y = a061205 x,
                        y /= x ^ 2, a010052 y == 1]
    -- Reinhard Zumkeller, Apr 10 2012, Apr 29 2011
  • Mathematica
    Select[ Range[11000], (k = Sqrt[ # * FromDigits @ Reverse @ IntegerDigits[#]]; IntegerQ[k] && k != #) &] (* Jean-François Alcover, Nov 30 2011 *)
    sdnQ[n_]:=Module[{c=n*IntegerReverse[n]},c!=n^2&&IntegerQ[Sqrt[c]]]; Select[ Range[11000],sdnQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 25 2016 *)

A306273 Numbers k such that k * rev(k) is a square, where rev=A004086, decimal reversal.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 100, 101, 111, 121, 131, 141, 144, 151, 161, 169, 171, 181, 191, 200, 202, 212, 222, 232, 242, 252, 262, 272, 282, 288, 292, 300, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 400, 404, 414, 424, 434, 441, 444, 454, 464, 474, 484, 494, 500, 505, 515, 525, 528, 535
Offset: 1

Views

Author

Bernard Schott, Feb 02 2019

Keywords

Comments

The first nineteen terms are palindromes (cf. A002113). There are exactly seven different families of integers which together partition the terms of this sequence. See the file "Sequences and families" for more details, comments, formulas and examples.
From Chai Wah Wu, Feb 18 2019: (Start)
If w is a term with decimal representation a, then the number n corresponding to the string axa is also a term, where x is a string of k repeated digits 0 where k >= 0. The number n = w*10^(k+m)+w = w*(10^(k+m)+1) where m is the number of digits of w. Then R(n) = R(w)*10^(k+m)+R(w) = R(w)(10^(k+m)+1). Then n*R(n) = w*R(w)(10^(k+m)+1)^2 which is a square since w is a term.
The same argument shows that numbers corresponding to axaxa, axaxaxa, ... are also terms.
For example, since 528 is a term, so are 528528, 5280528, 52800528, 5280052800528, etc.
(End)

Examples

			One example for each family:
family 1 is A002113: 323 * 323 = 323^2;
family 2 is A035090: 169 * 961 = 13^2 * 31^2 = 403^2;
family 3 is A082994: 288 * 882 = (2*144) * (2*441) = 504^2;
family 4 is A002113(j) * 100^k: 75700 * 757 = 7570^2;
family 5 is A035090(j) * 100^k: 44100 * 144 = 2520^2;
family 6 is A082994(j) * 100^k: 8670000 * 768 = 81600^2;
family 7 is A323061(j) * 10^(2k+1): 5476580 * 856745 = 2166110^2.
		

References

  • C. Stanley Ogilvy and John T. Anderson, Excursions in Number Theory, Oxford University Press, NY. (1966), pp. 88-89.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition (1997), p. 168.

Crossrefs

Cf. A083406, A083407, A083408, A117281 (Squares = k * rev(k) in at least two ways).

Programs

  • Maple
    revdigs:= proc(n) local L,i;
      L:= convert(n,base,10);
      add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    filter:= n -> issqr(n*revdigs(n)):
    select(filter, [$0..1000]);# Robert Israel, Feb 09 2019
  • Mathematica
    Select[Range[0, 535], IntegerQ@ Sqrt[# IntegerReverse@ #] &] (* Michael De Vlieger, Feb 03 2019 *)
  • PARI
    isok(n) = issquare(n*fromdigits(Vecrev(digits(n)))); \\ Michel Marcus, Feb 04 2019

A082994 Numbers n such that all the following properties hold: (i) n*reverse(n) is a square; (ii) n != reverse(n); (iii) n and reverse(n) are not both squares; and (iv) n and reverse(n) have the same number of digits.

Original entry on oeis.org

288, 528, 768, 825, 867, 882, 1584, 2178, 4851, 8712, 10989, 13104, 14544, 15984, 20808, 21978, 26208, 27648, 27848, 36828, 40131, 44541, 48139, 48951, 49686, 57399, 68694, 80262, 80802, 82863, 84672, 84872, 87912, 93184, 98901, 99375
Offset: 1

Views

Author

Jason Earls, May 29 2003

Keywords

Comments

These numbers are counterexamples to the following conjecture given in the Ogilvy-Anderson reference: "When an integer and its reversal are unequal, their product is never a square except when both are squares." This sequence excludes terms like 2200, i.e. 2200*22 = 48400.
Contains x*(10^k+1) for k >= 3 with x in {144, 169, 288, 441, 528, 768, 825, 867, 882, 961}. - Robert Israel, Jun 11 2018
A035090 U {this sequence} = A062917, with empty intersection. - Bernard Schott, Jan 04 2019

Examples

			a(5) = 867 because 867 * 768 = 665856 = 816^2.
		

References

  • C. Stanley Ogilvy and John T. Anderson, Excursions in Number Theory, Oxford University Press, NY. (1966), pp. 88-89.
  • J. Earls, Mathematical Bliss, Pleroma Publications, 2009, pages 82-83. ASIN: B002ACVZ6O [From Jason Earls, Nov 22 2009]

Crossrefs

Programs

  • Maple
    revdigs:= proc(n) local L;
      L:= convert(n,base,10);
      add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    filter:= proc(n) local r;
      if issqr(n) then return false fi;
      r:= revdigs(n);
      r <> n and issqr(r*n) and not issqr(r);
    end proc:
    select(filter, [seq(seq(10*i+j,j=1..9),i=1..10^4)]); # Robert Israel, Jun 11 2018
  • Mathematica
    Select[Range[10^5], And[UnsameQ @@ {#1, #2}, IntegerQ@ Sqrt[#1 #2], AllTrue[{#1, #2}, ! IntegerQ@ Sqrt@ # &], SameQ @@ (IntegerLength@ {#1, #2})] & @@ {#, IntegerReverse@ #} &] (* Michael De Vlieger, Jan 04 2019 *)

Extensions

Name clarified by Bernard Schott, Jan 04 2019
Showing 1-6 of 6 results.