cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A325148 Squares which can be expressed as the product of a number and its reversal.

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 400, 484, 900, 1089, 1600, 1936, 2500, 3025, 3600, 4356, 4900, 5929, 6400, 7744, 8100, 9801, 10000, 10201, 12100, 12321, 14641, 17161, 19881, 22801, 25921, 29241, 32761, 36481, 40000, 40804, 44944, 48400, 49284, 53824, 58564, 63504, 68644, 73984, 79524, 85264
Offset: 1

Views

Author

Bernard Schott, Apr 03 2019

Keywords

Comments

The numbers k such that k * rev(k) is a square are in A306273.
The squares of palindromes of A014186 are a subsequence.
The square roots of the first 65 terms of this sequence (from 0 to 160000) are exactly the first 65 terms of A061917. Then a(66) = 162409 = 403^2 and the non-palindrome 403 is the first term of another sequence A325151.

Examples

			Zero ways: 169 = 13^2 cannot be equal to k * rev(k).
One way: 400 = 200 * 2; 10201 = 101 * 101; 162409 = 169 * 961.
Two ways: 7683984 = 2772 * 2772 = 1584 * 4851.
Three ways: 6350400 = 14400 * 441 = 25200 * 252 = 44100 * 144.
		

Crossrefs

Equals A325149 Union A083408.
Cf. A325149 (only one way), A083408 (at least two ways). A325150 (exactly two ways), A307019 (exactly three ways).
Subsequences: A014186 (square of palindromes), A076750 (product of a non-palindrome and its reversal, where leading zeros are not allowed).
Cf. A061917, A325151 (some square roots of this sequence).

Programs

  • Maple
    isA305231 := proc(n)
        local d;
        for d in numtheory[divisors](n) do
            if d = digrev(n/d) then
                return true ;
            end if;
        end do:
        false ;
    end proc:
    n := 1;
    for i from 0 to 4000 do
        i2 := i^2 ;
        if isA305231(i2) then
            printf("%d %d\n",n,i2) ;
            n := n+1 ;
        end if;
    end do: # R. J. Mathar, Aug 09 2019
  • Mathematica
    {0}~Join~Select[Range[10^3]^2,(d1=Select[Divisors[n=#],#<=Sqrt@n&];Or@@Table[d1[[k]]==(IntegerReverse/@(n/d1))[[k]],{k,Length@d1}])&] (* Giorgos Kalogeropoulos, Jun 09 2021 *)
  • Python
    from sympy import divisors
    A325148_list = [0]
    for n in range(10**6):
        n2 = n**2
        for m in divisors(n2):
            if m > n:
                break
            if m == int(str(n2//m)[::-1]):
                A325148_list.append(n2)
                break # Chai Wah Wu, Jun 09 2021

Formula

Intersection of A305231 and A000290. - R. J. Mathar, Aug 09 2019

Extensions

Definition corrected by N. J. A. Sloane, Aug 01 2019

A325149 Squares which can be expressed as the product of a number and its reverse in exactly one way.

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 400, 484, 900, 1089, 1600, 1936, 2500, 3025, 3600, 4356, 4900, 5929, 6400, 7744, 8100, 9801, 10000, 10201, 12100, 12321, 14641, 17161, 19881, 22801, 25921, 29241, 32761, 36481, 40000, 40804, 44944, 48400, 49284, 53824, 58564, 68644, 73984, 79524, 85264, 90000
Offset: 1

Views

Author

Bernard Schott, Apr 03 2019

Keywords

Comments

The first 47 terms of this sequence (from 0 to 58564) are identical to the first 47 terms of A325148. The square 63504 is not present because it can be expressed in two ways: 63504 = 252 * 252 = 144 * 441.
There are three families of squares in this sequence:
1) Squares of palindromes in A002113\A117281.
2) Squares of non-palindromes which form the sequence A325151.
These squares are a subsequence of A076750.
3) Squares of (m*10^q) with q >= 1 and m palindrome in A002113\A117281.

Examples

			For each family:
1) Square of palindromes: 53824 = 232^2 = 232 * 232.
2) Square of non-palindromes m^2 = k*rev(k) with k and rev(k) which have the same number of digits: 162409 = 403^2 = 169 * 961.
3) Square ends with zeros: 48400 = 220^2 = 2200 * 22.
		

References

  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition, p. 168.

Crossrefs

Cf. A325148 (at least one way), A083408 (at least two ways), A325150 (exactly two ways), A307019 (exactly three ways).
Cf. A014186 (squares of palindromes), A076750.

Extensions

a(52) corrected by Chai Wah Wu, Apr 11 2019
Definition corrected by N. J. A. Sloane, Aug 01 2019

A325151 Non-palindromes numbers not ending in 0 whose square is the product of a number and its reverse in only one way.

Original entry on oeis.org

403, 504, 816, 3267, 4356, 22932, 31003, 32967, 35143, 41004, 43956, 45864, 48616, 55242, 58422, 66976, 75525, 329967, 341033, 403403, 439956, 451044, 504504, 784806, 816816, 1341331, 2341332, 2452442, 2480742, 2570652, 2749572, 3010003, 3141313, 3299967, 3321133, 3462543, 4010004, 4030403, 4035297, 4252424, 4399956
Offset: 1

Views

Author

Bernard Schott, Apr 05 2019

Keywords

Comments

The squares of these non-palindromes numbers form the second family of the terms of A325149, they form a subsequence of A076750.
The squares of these non-palindromes numbers generate also a family of terms of A325150 by this way: 4030^2 = 16900 * 961 = 96100 * 169.

Examples

			403^2 = 169 * 961.
		

Crossrefs

Subsequence of A207373.

Extensions

Definition and terms corrected by Chai Wah Wu, Apr 12 2019

A072443 Nonsquares which are the product of two numbers with the same digits (leading zeros are forbidden).

Original entry on oeis.org

252, 403, 574, 736, 765, 976, 1008, 1207, 1300, 1458, 1462, 1612, 1729, 1855, 1944, 2268, 2296, 2430, 2668, 2701, 2944, 3154, 3478, 3627, 3640, 4032, 4275, 4606, 4930, 5092, 5605, 5848, 6624, 6786, 7663, 8722, 11110, 12240, 13390, 13552, 14560, 14803, 15750, 16074
Offset: 1

Views

Author

N. J. A. Sloane, Nov 11 2002

Keywords

Examples

			12*21 = 252 = 12*21, 403 = 13*31, 574 = 14*41, etc
		

References

  • P. Vaderlind, R. K. Guy and L. C. Larsen, The Inquisitive Problem Solver, Math. Assoc. Am., 2002, Problem P185.

Crossrefs

A077760 is a subsequence.

Programs

  • PARI
    {for(n=100,15000,k=floor(log(n)/log(100)); f=divisors(n); v=[]; for(h=1,matsize(f)[2], if(10^k1, w=[]; for(i=1,b,s=[]; a=v[i]; while(a>0,d=divrem(a,10); a=d[1]; s=concat(d[2],s)); w=concat(w,[vecsort(s)])); c=0; for(i=1,b-1, for(j=i+1,b,if(c<1&&w[i]==w[j],if(v[i]*v[j]==n,print1(n,","); c=1))))))}
    
  • Python
    from math import isqrt
    from sympy import divisors
    def ok(n): return isqrt(n)**2Michael S. Branicky, Sep 08 2024

Extensions

Extended by Klaus Brockhaus, Nov 12 2002
a(42) and beyond from Michael S. Branicky, Sep 08 2024

A129623 Numbers which are the product of a non-palindrome and its reversal, where leading zeros are not allowed.

Original entry on oeis.org

252, 403, 574, 736, 765, 976, 1008, 1207, 1300, 1458, 1462, 1612, 1729, 1855, 1944, 2268, 2296, 2430, 2668, 2701, 2944, 3154, 3478, 3627, 3640, 4032, 4275, 4606, 4930, 5092, 5605, 5848, 6624, 6786, 7663, 8722, 20502, 23632, 26962, 30492, 31003, 34222
Offset: 1

Views

Author

Tanya Khovanova, May 30 2007

Keywords

Comments

The smallest square in this sequence is 63504 = 252*252 = 144*441.

Examples

			252 = 12*21.
		

Crossrefs

Programs

  • Mathematica
    Take[Union[ Transpose[ Select[Table[{n, n* FromDigits[Reverse[IntegerDigits[n]]]}, {n, 1000}], Mod[ #[[1]], 10] != 0 && #[[1]] != FromDigits[Reverse[IntegerDigits[ #[[1]]]]] &]][[2]]], 100]
    upto2ndigits@n_ := Union@(If[(i = IntegerReverse@#) > #, i*#, Nothing] & /@Range@(10^n - 1)); upto2ndigits@3 (* Hans Rudolf Widmer, Sep 06 2024 *)
  • Python
    from sympy import divisors
    def ok(n): return any(n==d*int(s[::-1]) for d in divisors(n)[1:-1] if (s:=str(d))!=s[::-1] and s[-1]!="0")
    print([k for k in range(36000) if ok(k)]) # Michael S. Branicky, Sep 07 2024
    
  • Python
    # instantly generates 44185 terms with n = 5
    def aupto2ndigits(n): return(sorted(set(i*int(s[::-1]) for i in range(12, 10**n) if i%10 != 0 and (s:=str(i)) != s[::-1])))
    print(aupto2ndigits(2))
    # Michael S. Branicky, Sep 08 2024 after Hans Rudolf Widmer

Extensions

Offset corrected by Stefano Spezia, Sep 07 2024

A207373 Numbers whose square is the product of a number and its reverse.

Original entry on oeis.org

252, 403, 504, 660, 816, 2772, 3267, 4356, 20502, 22932, 23632, 25452, 26962, 27972, 31003, 32967, 35143, 41004, 43956, 45864, 48384, 48616, 55242, 58422, 66976, 75525, 225522, 252252, 259952, 279972, 329967, 341033, 403403, 439956, 451044, 504504, 619916
Offset: 1

Views

Author

Carmine Suriano, Feb 17 2012

Keywords

Comments

Number and its reverse must have the same number of digits.
Number squared cannot be a palindrome. - Harvey P. Dale, Mar 12 2017

Examples

			35143^2 = 96721*12769.
		

Crossrefs

Cf. A076750.

Programs

  • Mathematica
    nir[n_]:=If[PalindromeQ[n]||Divisible[n,10],0,n IntegerReverse[n]]; Sqrt[#] &/@ Select[Array[nir,500000],#!=0&&IntegerQ[Sqrt[#]]&]//Union (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 12 2017 *)
Showing 1-6 of 6 results.