cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A066940 Numbers k such that gcd(prime(k+1) + 1, prime(k) + 1) = 2.

Original entry on oeis.org

2, 3, 5, 6, 7, 10, 11, 12, 13, 17, 18, 20, 21, 24, 25, 26, 28, 29, 30, 33, 35, 36, 37, 41, 42, 43, 44, 45, 49, 50, 52, 53, 57, 58, 59, 60, 61, 64, 65, 66, 67, 68, 69, 70, 73, 74, 77, 78, 79, 81, 82, 83, 84, 87, 88, 89, 98, 99, 100, 101, 104, 105, 106, 109, 110, 111, 112, 113
Offset: 1

Views

Author

Benoit Cloitre, Jan 24 2002

Keywords

Comments

Numbers k such that A063086(k) = 2. - Andrew Howroyd, Dec 10 2024

Crossrefs

Programs

  • Mathematica
    Select[ Range[120], GCD[ Prime[ # + 1] + 1, Prime[ # ] + 1] == 2 & ]
  • PARI
    isok(k) = { gcd(prime(k+1) + 1, prime(k) + 1) == 2 } \\ Harry J. Smith, Apr 09 2010

Extensions

Edited by Robert G. Wilson v, Feb 01 2002

A066941 Numbers k such that gcd(prime(k+1) + 1, prime(k) + 1) = 4.

Original entry on oeis.org

4, 8, 14, 19, 22, 27, 31, 38, 46, 47, 48, 63, 75, 85, 90, 93, 94, 95, 114, 117, 124, 131, 143, 149, 153, 154, 155, 163, 181, 192, 207, 213, 224, 229, 232, 235, 241, 242, 247, 248, 249, 261, 276, 285, 299, 303, 304, 314, 327, 328, 333, 334, 335, 348, 364, 370
Offset: 1

Views

Author

Benoit Cloitre, Jan 24 2002

Keywords

Comments

Numbers k such that A063086(k) = 4. - Andrew Howroyd, Dec 10 2024

Crossrefs

Programs

  • Mathematica
    Select[ Range[400], GCD[ Prime[ # + 1] + 1, Prime[ # ] + 1] == 4 & ]
  • PARI
    isok(k) = { gcd(prime(k+1) + 1, prime(k) + 1) == 4 } \\ Harry J. Smith, Apr 10 2010

Extensions

Edited by Robert G. Wilson v, Feb 01 2002

A066942 Numbers k such that gcd(prime(k+1) + 1, prime(k) + 1) = 6.

Original entry on oeis.org

9, 15, 16, 23, 32, 39, 40, 51, 54, 55, 56, 71, 76, 86, 96, 97, 102, 103, 107, 108, 118, 119, 123, 139, 160, 161, 164, 165, 170, 184, 185, 194, 195, 199, 200, 208, 218, 219, 227, 238, 245, 252, 255, 267, 290, 291, 292, 293, 298, 311, 312, 329, 342, 345, 349
Offset: 1

Views

Author

Benoit Cloitre, Jan 24 2002

Keywords

Comments

Numbers k such that A063086(k) = 6. - Andrew Howroyd, Dec 10 2024

Crossrefs

Programs

Extensions

Edited by Robert G. Wilson v, Feb 01 2002

A066943 Numbers k such that gcd(prime(k+1) + 1, prime(k) + 1) = 8.

Original entry on oeis.org

72, 92, 128, 132, 156, 166, 228, 246, 281, 282, 386, 417, 507, 519, 619, 620, 640, 641, 661, 712, 738, 739, 759, 801, 853, 898, 915, 1000, 1077, 1152, 1241, 1246, 1273, 1289, 1297, 1364, 1389, 1421, 1489, 1493, 1525, 1543, 1564, 1632, 1691, 1699, 1729
Offset: 1

Views

Author

Benoit Cloitre, Jan 24 2002

Keywords

Comments

Numbers k such that A063086(k) = 8. - Andrew Howroyd, Dec 10 2024

Crossrefs

Programs

  • Mathematica
    Select[ Range[120], GCD[ Prime[ # + 1] + 1, Prime[ # ] + 1] == 8 & ]
  • PARI
    isok(k) = { gcd(prime(k+1) + 1, prime(k) + 1) == 8 } \\ Harry J. Smith, Apr 10 2010

Extensions

Edited by Robert G. Wilson v, Feb 01 2002

A066944 Numbers k such that gcd(prime(k+1) + 1, prime(k) + 1) = 10.

Original entry on oeis.org

34, 80, 127, 145, 157, 175, 204, 222, 266, 289, 308, 316, 397, 442, 443, 518, 525, 578, 593, 656, 690, 746, 757, 773, 793, 832, 861, 866, 892, 908, 923, 949, 958, 971, 985, 1013, 1029, 1051, 1071, 1102, 1125, 1195, 1236, 1314, 1329, 1340, 1350, 1403, 1434
Offset: 1

Views

Author

Benoit Cloitre, Jan 24 2002

Keywords

Comments

Numbers k such that A063086(k) = 10. - Andrew Howroyd, Dec 10 2024

Crossrefs

Programs

  • Mathematica
    Select[ Range[1500], GCD[ Prime[ # + 1] + 1, Prime[ # ] + 1] == 10 & ]
    PrimePi/@Select[Partition[Prime[Range[1500]],2,1],GCD@@(#+1)==10&][[All,1]] (* Harvey P. Dale, May 05 2018 *)
  • PARI
    isok(k) = { gcd(prime(k+1) + 1, prime(k) + 1) == 10 } \\ Harry J. Smith, Apr 10 2010

Extensions

Edited by Robert G. Wilson v, Feb 01 2002

A309772 Least common multiple of prime(n+1)+1 and prime(n)+1.

Original entry on oeis.org

12, 12, 24, 24, 84, 126, 180, 120, 120, 480, 608, 798, 924, 528, 432, 540, 1860, 2108, 1224, 2664, 2960, 1680, 1260, 4410, 4998, 5304, 2808, 5940, 6270, 7296, 4224, 3036, 9660, 2100, 11400, 12008, 12956, 6888, 4872, 5220, 16380, 17472, 18624, 19206, 19800, 10600
Offset: 1

Views

Author

Daniel Hoyt, Aug 16 2019

Keywords

Comments

a(n) = (prime(n)+1)*(prime(n+1)+1)/2 if n is in A066940. - Robert Israel, Aug 16 2019

Crossrefs

Cf. A008864, A063086 (gcd), A066940, A180617 (product).

Programs

  • Magma
    [Lcm(1+NthPrime(n),1+NthPrime(n+1)):n in [1..50]]; // Marius A. Burtea, Aug 16 2019
  • Maple
    P:= [seq(ithprime(i),i=1..100)]:
    seq(ilcm(P[i]+1,P[i+1]+1),i=1..99); # Robert Israel, Aug 16 2019
  • Mathematica
    Array[LCM[Prime[#] + 1, Prime[# + 1] + 1] &, 50] (* Amiram Eldar, Aug 16 2019 *)

Formula

a(n) = lcm(A008864(n+1), A008864(n)) = lcm(prime(n+1)+1, prime(n)+1).
Showing 1-6 of 6 results.