A247838 Numbers k such that sigma(sigma(k)) is prime.
3, 2667, 3937, 57337, 172011, 253921, 677207307, 1073602561, 732959441001382539, 750688035198863979, 1000923107604038521, 1108158528150703969
Offset: 1
Examples
2667 is a term because sigma(sigma(2667)) = sigma(4096) = 8191 (i.e., prime).
Programs
-
Magma
[n: n in [1..10000000] | IsPrime(SumOfDivisors(SumOfDivisors(n)))];
-
Maple
with(numtheory): A247838:=n->`if`(isprime(sigma(sigma(n))),n,NULL): seq(A247838(n), n=1..10^5); # Wesley Ivan Hurt, Oct 02 2014
-
Mathematica
Select[Range[260000],PrimeQ[DivisorSigma[1,DivisorSigma[1,#]]]&] (* The program generates the first six terms of the sequence. *) (* Harvey P. Dale, Jan 18 2024 *)
-
PARI
isok(n) = isprime(sigma(sigma(n))); \\ Michel Marcus, Oct 01 2014
Formula
a(n) = 2*A247821(n)-1.
Extensions
a(7)-a(8) from Michel Marcus, Oct 02 2014
a(9)-a(12) from Giovanni Resta, Feb 14 2020
Comments