A063170 Schenker sums with n-th term.
1, 2, 10, 78, 824, 10970, 176112, 3309110, 71219584, 1727242866, 46602156800, 1384438376222, 44902138752000, 1578690429731402, 59805147699103744, 2428475127395631750, 105224992014096760832, 4845866591896268695010, 236356356027029797011456
Offset: 0
Examples
a(4) = (1*2*3*4) + 4*(2*3*4) + 4*4*(3*4) + 4*4*4*(4) + 4*4*4*4. G.f. = 1 + 2*x + 10*x^2 + 78*x^3 + 824*x^4 + 10970*x^5 + 176112*x^6 + ...
References
- D. E. Knuth, The Art of Computer Programming, 3rd ed. 1997, Vol. 1, Addison-Wesley, p. 123, Exercise Section 1.2.11.3 18.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..385
- Max Alekseyev, Recursion for A063170, answer to question on MathOverflow (2025).
- T. Amdeberhan, D. Callan, and V. Moll, p-adic analysis and combinatorics of truncated exponential sums, preprint, 2012.
- T. Amdeberhan, D. Callan and V. Moll, Valuations and combinatorics of truncated exponential sums, INTEGERS 13 (2013), #A21.
- Steven Finch, Rounds, Color, Parity, Squares, arXiv:2111.14487 [math.CO], 2021.
- Helmut Prodinger, An identity conjectured by Lacasse via the tree function, Electronic Journal of Combinatorics, 20(3) (2013), #P7.
- David M. Smith and Geoffrey Smith, Tight Bounds on Information Leakage from Repeated Independent Runs, 2017 IEEE 30th Computer Security Foundations Symposium (CSF).
- Marijke van Gans, Schenker sums
- Eric Weisstein, Exponential Sum Function.
Programs
-
Maple
seq(simplify(GAMMA(n+1,n)*exp(n)),n=0..20); # Vladeta Jovovic, Jul 21 2005
-
Mathematica
a[n_] := Round[ Gamma[n+1, n]*Exp[n]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 16 2012, after Vladeta Jovovic *) a[ n_] := If[ n < 1, Boole[n == 0], n! Sum[ n^k / k!, {k, 0, n}]]; (* Michael Somos, Jun 05 2014 *) a[ n_] := If[ n < 0, 0, n! Normal[ Exp[x] + x O[x]^n] /. x -> n]; (* Michael Somos, Jun 05 2014 *)
-
PARI
{a(n) = if( n<0, 0, n! * sum( k=0, n, n^k / k!))};
-
PARI
{a(n) = sum( k=0, n, binomial(n, k) * k^k * (n - k)^(n - k))}; /* Michael Somos, Jun 09 2004 */
-
PARI
for(n=0,17,print1(round(intnum(x=0,[oo,1],exp(-x)*(n+x)^n)),", ")) \\ Gerald McGarvey, Nov 17 2007
-
Python
from math import comb def A063170(n): return (sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n) + (n**n<<1) if n else 1 # Chai Wah Wu, Apr 26 2023
-
UBASIC
10 for N=1 to 42: T=N^N: S=T 20 for K=N to 1 step -1: T/=N: T*=K: S+=T: next K 30 print N,S: next N
Formula
a(n) = Sum_{k=0..n} n^k n!/k!.
a(n)/n! = Sum_{k=0..n} n^k/k!. (First n+1 terms of e^n power series.)
a(n) = A063169(n) + n^n.
E.g.f.: 1/(1-T)^2, where T=T(x) is Euler's tree function (see A000169).
E.g.f.: 1 / (1 - F), where F = F(x) is the e.g.f. of A003308. - Michael Somos, May 27 2012
a(n) = Sum_{k=0..n} binomial(n,k)*(n+k)^k*(-k)^(n-k). - Vladeta Jovovic, Oct 11 2007
Asymptotics of the coefficients: sqrt(Pi*n/2)*n^n. - N-E. Fahssi, Jan 25 2008
a(n) = Integral_{0..oo} exp(-x) * (n + x)^n dx. - Michael Somos, May 18 2004
a(n) = Integral_{0..oo} exp(-x)*(1+x/n)^n dx * n^n = A090878(n)/A036505(n-1) * n^n. - Gerald McGarvey, Nov 17 2007
EXP-CONV transform of A000312. - Tilman Neumann, Dec 13 2008
a(n) = n! * [x^n] exp(n*x)/(1 - x). - Ilya Gutkovskiy, Sep 23 2017
a(n) = (n+1)! - Sum_{k=0..n-1} binomial(n, k)*a(k)*(-k)^(n-k) for n > 0 with a(0) = 1 (see Max Alekseyev link). - Mikhail Kurkov, Jan 14 2025
Comments