A063443 Number of ways to tile an n X n square with 1 X 1 and 2 X 2 tiles.
1, 1, 2, 5, 35, 314, 6427, 202841, 12727570, 1355115601, 269718819131, 94707789944544, 60711713670028729, 69645620389200894313, 144633664064386054815370, 540156683236043677756331721, 3641548665525780178990584908643, 44222017282082621251230960522832336
Offset: 0
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 343
Links
- Andrew Woods and Vaclav Kotesovec and Johan Nilsson, Table of n, a(n) for n = 0..40 (terms 0..21 from Andrew Woods, terms 22..24 from Vaclav Kotesovec and terms 25..40 from Johan Nilsson)
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 68-69.
- R. J. Mathar, Tiling n x m rectangles with 1 x 1 and s x s squares, arXiv:1609.03964 [math.CO], 2016, Section 4.1.
- J. Nilsson, On Counting the Number of Tilings of a Rectangle with Squares of Size 1 and 2, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.2.
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Eric Weisstein's World of Mathematics, King Graph
- Eric Weisstein's World of Mathematics, Vertex Cover
Crossrefs
Programs
-
Mathematica
Needs["LinearAlgebra`MatrixManipulation`"] Remove[mat] step[sa[rules1_, {dim1_, dim1_}], sa[rules2_, {dim2_, dim2_}]] := sa[Join[rules2, rules1 /. {x_Integer, y_Integer} -> {x + dim2, y}, rules1 /. {x_Integer, y_Integer} -> {x, y + dim2}], {dim1 + dim2, dim1 + dim2}] mat[0] = sa[{{1, 1} -> 1}, {1, 1}]; mat[1] = sa[{{1, 1} -> 1, {1, 2} -> 1, {2, 1} -> 1}, {2, 2}]; mat[n_] := mat[n] = step[mat[n - 2], mat[n - 1]]; A[n_] := mat[n] /. sa -> SparseArray; F[n_] := MatrixPower[A[n], n + 1][[1, 1]]; (* Mark McClure (mcmcclur(AT)bulldog.unca.edu), Mar 19 2006 *) $RecursionLimit = 1000; Clear[a, b]; b[n_, l_List] := b[n, l] = Module[{m=Min[l], k}, If[m>0, b[n-m, l-m], If[n == 0, 1, k=Position[l, 0, 1, 1][[1, 1]]; b[n, ReplacePart[l, k -> 1]] + If[n>1 && k
2, k+1 -> 2}]], 0]]]]; a[n_] := a[n] = If[n<2, 1, b[n, Table[0, {n}]]]; Table[Print[a[n]]; a[n], {n, 0, 17}] (* Jean-François Alcover, Dec 11 2014, after Alois P. Heinz *)
Formula
Lim_{n -> infinity} (a(n))^(1/n^2) = A247413 = 1.342643951124... . - Brendan McKay, 1996
Extensions
4 more terms from R. H. Hardin, Jan 23 2002
2 more terms from Keith Schneider (kschneid(AT)bulldog.unca.edu), Mar 19 2006
5 more terms from Andrew Woods, Aug 27 2011
a(22)-a(24) in b-file from Vaclav Kotesovec, May 01 2012
a(0) inserted by Alois P. Heinz, Sep 17 2014
a(25)-a(40) in b-file from Johan Nilsson, Mar 10 2016
Comments