cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A005750 Number of planted matched trees with n nodes.

Original entry on oeis.org

1, 1, 3, 10, 39, 160, 702, 3177, 14830, 70678, 342860, 1686486, 8393681, 42187148, 213828802, 1091711076, 5609297942, 28982708389, 150496728594, 784952565145, 4110491658233, 21602884608167, 113907912618599, 602414753753310, 3194684310627727, 16984594260224529
Offset: 1

Views

Author

Keywords

Comments

When convolved with itself gives A000151.
Number of rooted trees with n nodes and edges not attached to root are 2-colored or oriented.
Also number of 2-trees (with 2n+1 cells) rooted at a symmetric end-edge. - Vladeta Jovovic, Aug 22 2001

Examples

			A(x) = x + x^2 + 3*x^3 + 10*x^4 + 39*x^5 + 160*x^6 + 702*x^7 + ...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.5.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 75, Eq. (3.5.3).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A:= proc(n) option remember; if n=0 then 0 else unapply(convert(series(x*exp(add((A(n-1)(x^k))^2/(k*x^k), k=1..2*n)), x=0,2*n), polynom), x) fi end: a:= n-> coeff(series(A(n)(x), x=0, n+1), x,n): seq(a(n), n=1..23); # Alois P. Heinz, Aug 20 2008
  • Mathematica
    max = 23; f[x_] := Sum[c[k]*x^k, {k, 0, max}]; c[0] = 0; c[1] = 1; coes = CoefficientList[ Series[ Log[f[x]/x] - Sum[f[x^k]^2/(k*x^k), {k, 1, max}], {x, 0, max}], x]; eqns = Rest[ Thread[coes == 0]]; s[2] = Solve[eqns[[1]], c[2]][[1]]; Do[eqns = Rest[eqns] /. s[k-1]; s[k] = Solve[ eqns[[1]], c[k]][[1]], {k, 3, max}]; Table[c[k], {k, 1, max}] /. Flatten[ Table[s[k], {k, 2, max}]] (* Jean-François Alcover, Oct 25 2011, after g.f. *)
    terms = 26; (* B = g.f. of A000151 *) B[] = 0; Do[B[x] = x*Exp[2*Sum[ B[x^k]/k, {k, 1, terms}]] + O[x]^terms // Normal, terms];
    A[x_] = Exp[Sum[B[x^k]/k, {k, 1, terms}]] + O[x]^terms;
    CoefficientList[A[x], x] (* Jean-François Alcover, Jan 11 2018 *)
  • PARI
    seq(N) = {my(A=vector(N, j, 1)); for(n=1, N-1, A[n+1] = 2/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); Vec(sqrt(Ser(A)))} \\ Andrew Howroyd, May 13 2018

Formula

a(n+1) is Euler transform of A000151.
G.f.: A(x) = x*exp( A(x)^2/x + A(x^2)^2/(2x^2) + A(x^3)^2/(3x^3) + ... + A(x^n)^2/(n*x^n) + ...). [Harary & Palmer (3.5.8)] - Paul D. Hanna
G.f.: sqrt(B(x)/x) where B(x) is the g.f. of A000151. - Andrew Howroyd, May 13 2018
a(n) ~ c * d^n / n^(3/2), where d = A245870 = 5.646542616232..., c = 0.06185402386554883780092844840921448929211072031752507960399709674242810089... - Vaclav Kotesovec, Sep 12 2014, updated Dec 26 2020
a(n) = A063687(n)+2*A058870(n). [Harary & Palmer (3.5.3)] - R. J. Mathar, Jan 13 2025

Extensions

More terms, formula and comment from Christian G. Bower, Dec 15 1999

A058866 Number of 2-trees rooted at an edge.

Original entry on oeis.org

1, 2, 6, 21, 83, 356, 1599, 7434, 35381, 171508, 843419, 4197179, 21094355, 106915928, 545859112, 2804656069, 14491370996, 75248398034, 392476363133, 2055245992376, 10801442696736, 56953957110855, 301207378815752
Offset: 1

Views

Author

N. J. A. Sloane, Jan 06 2001

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 75, Eq. (3.5.11).

Crossrefs

Let A063687(n) be the number of 2-trees rooted at a symmetric edge (see H. and P. Eq. (3.5.9)). Then A058866(n) = A058870(n) + A063687(n).

Formula

H. and P. give g.f.

Extensions

More terms from Vladeta Jovovic, Aug 22 2001

A058870 Number of 2-trees rooted at an asymmetric edge.

Original entry on oeis.org

0, 1, 4, 18, 77, 346, 1578, 7396, 35297, 171352, 843067, 4196502, 21092793, 106912874, 545851964, 2804641873, 14491337393, 75248330560, 392476202012, 2055245665857, 10801441911431, 56953955507744, 301207374937558
Offset: 1

Views

Author

N. J. A. Sloane, Jan 06 2001

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 75, Eq. (3.5.10).

Crossrefs

Let A063687(n) be the number of 2-trees rooted at a symmetric edge (see H. and P. Eq. (3.5.9)). Then A058866(n) = A058870(n) + A063687(n).

Formula

H. and P. give g.f.

Extensions

More terms from Vladeta Jovovic, Aug 22 2001

A063689 Number of 2-trees rooted at a triangle with 3 similar edges.

Original entry on oeis.org

1, 1, 2, 6, 21, 83, 356, 1599, 7434, 35381, 171508, 843419, 4197179, 21094355, 106915928, 545859112, 2804656069, 14491370996, 75248398034, 392476363133, 2055245992376, 10801442696736, 56953957110855, 301207378815752, 1597342159296786, 8492297139795170
Offset: 1

Views

Author

Vladeta Jovovic, Aug 22 2001

Keywords

Examples

			Sequence really begins 1, 0, 0, 1, 0, 0, 2, 0, 0, 6, 0, 0, 21, 0, 0, 83, 0, 0, 356, ... but only nonzero trisection is shown.
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 76, Eq. (3.5.17).

Crossrefs

Formula

a(n) = A058870(n) + A063687(n) with A058870(0)=0. - Sean A. Irvine, May 07 2023

Extensions

More terms from Sean A. Irvine, May 07 2023
Showing 1-4 of 4 results.