A063908 Numbers k such that k and 2*k-3 are primes.
3, 5, 7, 11, 13, 17, 23, 31, 37, 41, 43, 53, 67, 71, 83, 97, 101, 107, 113, 127, 137, 157, 167, 181, 191, 193, 211, 223, 233, 241, 251, 263, 283, 311, 317, 331, 347, 373, 421, 431, 433, 443, 457, 461, 487, 521, 547, 563, 577, 587, 613, 617, 631, 641, 643, 647
Offset: 1
Keywords
Examples
From _K. D. Bajpai_, Nov 29 2019: (Start) a(5) = 13 is prime and 2*13 - 3 = 23 is also prime. a(6) = 17 is prime and 2*17 - 3 = 31 is also prime. (End)
Links
- Harry J. Smith and K. D. Bajpai, Table of n, a(n) for n = 1..10000 (first 1000 terms from Harry J. Smith)
- Carlos Rivera, Puzzle 34.- Prime Triplets in arithmetic progression, The Prime Puzzles & Problems Connection. [From _M. F. Hasler_, Sep 24 2009]
Programs
-
Haskell
a063908 n = a063908_list !! (n-1) a063908_list = filter ((== 1) . a010051' . (subtract 3) . (* 2)) a000040_list -- Reinhard Zumkeller, Jul 02 2015
-
Magma
[n : n in [0..700] | IsPrime(n) and IsPrime(2*n-3)]; // Vincenzo Librandi, Nov 14 2014
-
Maple
select(k -> andmap(isprime, [k, 2*k-3]), [seq(k, k=1.. 10^4)]); # K. D. Bajpai, Nov 29 2019
-
Mathematica
Select[Prime[Range[6! ]],PrimeQ[2*#-3]&] (* Vladimir Joseph Stephan Orlovsky, Nov 17 2009 *)
-
PARI
{ n=0; p=1; for (m=1, 10^9, p=nextprime(p+1); if (isprime(2*p - 3), write("b063908.txt", n++, " ", p); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 02 2009
-
PARI
forprime( p=1,default(primelimit), isprime(2*p-3) && print1(p",")) \\ M. F. Hasler, Sep 24 2009
Formula
a(n) = A241817(n)/2. - Wesley Ivan Hurt, Apr 08 2018
Comments