cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A145490 Numbers k such that 6k+19 is prime and absolute value of 12k+1 is also prime.

Original entry on oeis.org

-2, -1, 3, 8, 9, 13, 15, 20, 23, 29, 34, 35, 48, 55, 59, 63, 69, 73, 78, 84, 93, 100, 104, 115, 119, 134, 135, 139, 148, 150, 169, 174, 178, 185, 189, 199, 203, 210, 213, 218, 238, 254, 255, 260, 265, 268, 275, 280, 288, 289, 293, 294, 295, 308, 309, 335, 344
Offset: 1

Views

Author

Artur Jasinski, Oct 11 2008

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) if(isprime(6*n+19) and isprime(abs(12*n+1)))then return n: fi: return NULL: end: seq(a(n),n=-2..350); # Nathaniel Johnston, Jul 26 2011

Formula

a(n) = (A145480(n-2)-1)/12 for n >= 3.

Extensions

Corrected by Arkadiusz Wesolowski, Jul 26 2011

A145487 Numbers k such that 6k+5 is prime and 12k+5 is also prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 8, 9, 11, 14, 16, 21, 22, 24, 29, 32, 37, 38, 42, 43, 46, 51, 58, 63, 64, 66, 71, 73, 77, 79, 81, 84, 92, 98, 99, 102, 106, 107, 108, 113, 119, 123, 134, 136, 142, 143, 156, 157, 158, 162, 184, 191, 196, 198, 203, 212, 217, 219, 227, 228, 238, 241, 246
Offset: 1

Views

Author

Artur Jasinski, Oct 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; k = 5; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, (Prime[n] - 5)/12]], {n, 1, 500}]; aa
    Select[Range[0, 250], PrimeQ[6 # + 5] && PrimeQ[12 # + 5] &] (* Ivan Neretin, Jan 21 2017 *)
    Select[Range[0,250],AllTrue[5+{6#,12#},PrimeQ]&] (* Harvey P. Dale, Dec 20 2022 *)

Formula

a(n) = (A145471(n)-5)/12.

A290838 a(n) = smallest prime p such that 2p - 2n + 1 is prime.

Original entry on oeis.org

2, 2, 3, 5, 5, 7, 7, 13, 11, 11, 11, 13, 13, 19, 17, 17, 17, 19, 19, 37, 23, 23, 23, 29, 29, 31, 29, 29, 29, 31, 31, 37, 37, 41, 37, 37, 37, 43, 41, 41, 41, 43, 43, 61, 47, 47, 47, 53, 53, 67, 53, 53, 53, 59, 59, 61, 59, 59, 59, 61, 61, 67, 67, 71, 67, 67, 67, 73
Offset: 0

Views

Author

XU Pingya, Aug 11 2017

Keywords

Comments

a(n) > n. - Iain Fox, Nov 13 2017

Crossrefs

Programs

  • Mathematica
    Table[j=0; found=False; While[!found,j++; found=PrimeQ[2Prime[j]-2n+1] && 2Prime[j]-2n+1>0]; Prime[j],{n,67}]
    (* Second program: *)
    Table[SelectFirst[Prime@ Range[n^2], And[# > 0, PrimeQ@ #] &[2 # - 2 n + 1] &], {n, 67}] (* Michael De Vlieger, Aug 14 2017 *)
  • PARI
    a(n) = {my(p=2); while(!isprime(2*p-2*n+1), p = nextprime(p+1)); p; } \\ Michel Marcus, Aug 12 2017
    
  • PARI
    a(n) = forprime(p=n+1, , if(isprime(2*p - 2*n + 1), return(p))) \\ Iain Fox, Nov 13 2017

Formula

a(-n) = A290839(n+1) - Iain Fox, Dec 14 2017

Extensions

a(0) prepended by Iain Fox, Dec 14 2017

A337480 Numbers k such that exactly one of 6*k + 5 and 12*k + 5 is prime.

Original entry on oeis.org

6, 12, 13, 17, 18, 19, 23, 26, 27, 28, 31, 33, 39, 41, 44, 47, 48, 49, 52, 53, 54, 56, 57, 59, 67, 68, 69, 74, 76, 78, 83, 86, 87, 88, 91, 93, 94, 97, 101, 109, 112, 114, 116, 117, 124, 126, 128, 129, 132, 133, 137, 139, 141, 144, 146, 147, 151, 154, 159, 161
Offset: 1

Views

Author

K. D. Bajpai, Aug 28 2020

Keywords

Examples

			a(5) = 18 is a term because 6*18 + 5 = 113 is prime; but 12*18 + 5 = 221 = (13*17) is a composite number.
a(8) = 26 is a term because 6*26 + 5 = 161 = (7*23) is a composite number; but 12*26 + 5 = 317 is prime.
		

Crossrefs

Programs

  • Maple
    A337480:=k->`if`(isprime(6*k+5) xor isprime(12*k+5),k, NULL): seq(A337480(k), k=1..1000);
  • Mathematica
    Select[Range[0, 250], Xor[PrimeQ[6 # + 5], PrimeQ[12 # + 5]] &]
  • PARI
    for(k=1, 1000, if (bitxor(isprime(6*k+5), isprime(12*k+5)), print1(k, ", ")));

A145481 Primes p such that 2*p - 17 is prime.

Original entry on oeis.org

11, 17, 23, 29, 53, 59, 83, 107, 137, 149, 167, 233, 239, 263, 269, 293, 317, 347, 359, 389, 419, 449, 479, 557, 563, 599, 617, 647, 653, 659, 809, 827, 857, 863, 947, 953, 983, 1049, 1163, 1187, 1217, 1229, 1283, 1319, 1373, 1409, 1427, 1439, 1487, 1493
Offset: 1

Views

Author

Artur Jasinski, Oct 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; k = 17; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, (k + Prime[n])/2]], {n, 1, 500}];aa
    (* Second program: *)
    Select[Prime@ Range@ 250, And[PrimeQ@ #, # > 0] &[2 # - 17] &] (* Michael De Vlieger, Jan 23 2017 *)

Formula

a(n) = 2*A145475(n) - 17.

A145482 Primes p such that 2*p - 19 is prime.

Original entry on oeis.org

11, 13, 19, 31, 43, 61, 73, 79, 109, 151, 163, 193, 199, 229, 241, 271, 283, 313, 331, 373, 379, 421, 439, 463, 541, 571, 661, 673, 709, 733, 739, 751, 823, 859, 883, 1009, 1051, 1129, 1153, 1201, 1279, 1453, 1543, 1549, 1663, 1669, 1741, 1759, 1783, 1789
Offset: 1

Views

Author

Artur Jasinski, Oct 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; k = 19; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, (k + Prime[n])/2]], {n, 1, 500}];aa
    (* Second program: *)
    Select[Prime@ Range@ 300, And[PrimeQ@ #, # > 0] &[2 # - 19] &] (* Michael De Vlieger, Jan 23 2017 *)

Formula

a(n) = 2*A145476(n) - 19.

A145483 Primes p such that 2*p - 23 is prime.

Original entry on oeis.org

13, 17, 23, 41, 47, 53, 101, 107, 131, 137, 167, 191, 227, 233, 251, 257, 263, 293, 311, 353, 383, 431, 443, 467, 503, 521, 557, 563, 587, 593, 641, 653, 761, 773, 797, 821, 947, 977, 1013, 1031, 1061, 1181, 1187, 1217, 1223, 1277, 1283, 1301, 1307, 1361
Offset: 1

Views

Author

Artur Jasinski, Oct 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; k = 23; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, (k + Prime[n])/2]], {n, 1, 500}];aa
    (* Second program: *)
    Select[Prime@ Range@ 240, And[PrimeQ@ #, # > 0] &[2 # - 23] &] (* Michael De Vlieger, Jan 23 2017 *)

Formula

a(n) = 2*A145477(n) - 23.

A145484 Primes p such that 2*p - 29 is a positive prime.

Original entry on oeis.org

17, 23, 29, 41, 59, 71, 83, 89, 101, 113, 131, 149, 173, 191, 239, 269, 293, 311, 353, 401, 419, 443, 479, 491, 503, 521, 563, 569, 653, 659, 701, 719, 761, 821, 863, 881, 953, 971, 1013, 1049, 1091, 1151, 1163, 1181, 1193, 1223, 1289, 1319, 1361, 1409
Offset: 1

Views

Author

Artur Jasinski, Oct 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; k = 29; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, (k + Prime[n])/2]], {n, 1, 500}];aa (* Artur Jasinski *)
    Select[Prime[Range[7,300]],PrimeQ[2#-29]&] (* Harvey P. Dale, Dec 14 2010 *)

Formula

a(n) = 2*A145478(n) - 29.

A145485 Primes p such that 2*p - 31 is prime.

Original entry on oeis.org

17, 19, 31, 37, 67, 79, 97, 127, 151, 157, 181, 199, 277, 331, 337, 379, 409, 421, 457, 499, 541, 547, 577, 601, 631, 661, 727, 739, 751, 757, 787, 829, 877, 907, 991, 1009, 1021, 1087, 1117, 1171, 1201, 1249, 1291, 1381, 1399, 1459, 1549, 1597, 1609, 1669
Offset: 1

Views

Author

Artur Jasinski, Oct 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; k = 31; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, (k + Prime[n])/2]], {n, 1, 500}];aa
  • PARI
    list(lim)=my(v=List()); forprime(p=2,lim, if(isprime(2*p-31), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Jan 23 2017

Formula

a(n) = 2*A145479(n) - 31.

A145486 Primes p such that 2*p - 37 is prime.

Original entry on oeis.org

37, 67, 73, 97, 109, 139, 157, 193, 223, 229, 307, 349, 373, 397, 433, 457, 487, 523, 577, 619, 643, 709, 733, 823, 829, 853, 907, 919, 1033, 1063, 1087, 1129, 1153, 1213, 1237, 1279, 1297, 1327, 1447, 1543, 1549, 1579, 1609, 1627, 1669, 1699, 1747, 1753
Offset: 1

Views

Author

Artur Jasinski, Oct 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; k = 37; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, (k + Prime[n])/2]], {n, 1, 500}];aa
  • PARI
    list(lim)=my(v=List()); forprime(p=2,lim, if(isprime(2*p-37), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Jan 23 2017

Formula

a(n)=2*A145480(n)-37
Showing 1-10 of 12 results. Next