cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063937 Sum of unitary divisors of n is a square > 1.

Original entry on oeis.org

3, 8, 22, 24, 66, 70, 76, 94, 115, 119, 170, 210, 214, 217, 228, 252, 265, 282, 310, 316, 322, 345, 357, 382, 385, 490, 497, 510, 517, 522, 527, 580, 612, 642, 651, 679, 710, 716, 742, 745, 782, 795, 801, 833, 862, 889, 920, 930, 935, 948, 952, 966, 970
Offset: 1

Views

Author

Felice Russo, Aug 31 2001

Keywords

Comments

A unitary divisor of n is a divisor d of n such that gcd(d, n/d) = 1.

Examples

			The unitary divisors of 3 are 1,3 and then 3 + 1 = 4 is a square.
		

Crossrefs

Programs

  • Haskell
    import Data.List (findIndices)
    a063937 n = a063937_list !! (n-1)
    a063937_list = map (+ 2) $
                   findIndices ((== 1) . a010052) $ tail a034448_list
    -- Reinhard Zumkeller, Aug 15 2012
  • Mathematica
    udQ[n_]:=Module[{totdivs=Total[Sort[Flatten[Outer[Times,Sequence@@({1,#}&/@Power@@@FactorInteger[n])]]]]},totdivs>1&&IntegerQ[Sqrt[totdivs]]]; Select[Range[1000],udQ] (* Harvey P. Dale, Apr 22 2012, using program from Eric Weisstein at https://mathworld.wolfram.com/UnitaryDivisor.html *)
  • PARI
    us(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d))
    { n=0; for (m=1, 10^9, u=us(m); if (issquare(u) && u > 1, write("b063937.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 03 2009
    

Formula

a(n) > 1 and A010052(A034448(a(n))) = 1. - Reinhard Zumkeller, Aug 15 2012