cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A034448 usigma(n) = sum of unitary divisors of n (divisors d such that gcd(d, n/d)=1); also called UnitarySigma(n).

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 9, 10, 18, 12, 20, 14, 24, 24, 17, 18, 30, 20, 30, 32, 36, 24, 36, 26, 42, 28, 40, 30, 72, 32, 33, 48, 54, 48, 50, 38, 60, 56, 54, 42, 96, 44, 60, 60, 72, 48, 68, 50, 78, 72, 70, 54, 84, 72, 72, 80, 90, 60, 120, 62, 96, 80, 65, 84, 144, 68, 90, 96, 144
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Row sums of the triangle in A077610. - Reinhard Zumkeller, Feb 12 2002
Multiplicative with a(p^e) = p^e+1 for e>0. - Franklin T. Adams-Watters, Sep 11 2005

Examples

			Unitary divisors of 12 are 1, 3, 4, 12. Or, 12=3*2^2 hence usigma(12)=(3+1)*(2^2+1)=20.
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.

Crossrefs

Programs

  • Haskell
    a034448 = sum . a077610_row  -- Reinhard Zumkeller, Feb 12 2012
    (Python 3.8+)
    from math import prod
    from sympy import factorint
    def A034448(n): return prod(p**e+1 for p, e in factorint(n).items()) # Chai Wah Wu, Jun 20 2021
  • Maple
    A034448 := proc(n) local ans, i:ans := 1: for i from 1 to nops(ifactors(n)[ 2 ]) do ans := ans*(1+ifactors(n)[ 2 ][ i ][ 1 ]^ifactors(n)[ 2 ] [ i ] [ 2 ]): od: RETURN(ans) end:
    a := proc(n) local i; numtheory[divisors](n); select(d -> igcd(d,n/d)=1, %); add(i,i=%) end; # Peter Luschny, May 03 2009
  • Mathematica
    usigma[n_] := Block[{d = Divisors[n]}, Plus @@ Select[d, GCD[ #, n/# ] == 1 &]]; Table[ usigma[n], {n, 71}] (* Robert G. Wilson v, Aug 28 2004 *)
    Table[DivisorSum[n, # &, CoprimeQ[#, n/#] &], {n, 70}] (* Michael De Vlieger, Mar 01 2017 *)
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; Array[usigma, 100] (* faster since avoids generating divisors, Giovanni Resta, Apr 23 2017 *)
  • PARI
    A034448(n)=sumdiv(n,d,if(gcd(d,n/d)==1,d)) \\ Rick L. Shepherd
    
  • PARI
    A034448(n) = {my(f=factorint(n)); prod(k=1, #f[,2], f[k,1]^f[k,2]+1)} \\ Andrew Lelechenko, Apr 22 2014
    
  • PARI
    a(n)=sumdivmult(n,d,if(gcd(d,n/d)==1,d)) \\ Charles R Greathouse IV, Sep 09 2014
    

Formula

If n = Product p_i^e_i, usigma(n) = Product (p_i^e_i + 1). - Vladeta Jovovic, Apr 19 2001
Dirichlet generating function: zeta(s)*zeta(s-1)/zeta(2s-1). - Franklin T. Adams-Watters, Sep 11 2005
Conjecture: a(n) = sigma(n^2/rad(n))/sigma(n/rad(n)), where sigma = A000203 and rad = A007947. - Velin Yanev, Aug 20 2017
This conjecture is easily verified since all the functions involved are multiplicative and proving it for prime powers is straightforward. - Juan José Alba González, Mar 19 2021
From Amiram Eldar, May 29 2020: (Start)
Sum_{d|n, gcd(d, n/d) = 1} a(d) * (-1)^omega(n/d) = n.
a(n) <= sigma(n) = A000203(n), with equality if and only if n is squarefree (A005117). (End)
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / (12*zeta(3)). - Vaclav Kotesovec, May 20 2021
a(n) = uphi(n^2)/uphi(n) = A191414(n)/uphi(n), where uphi(n) = A047994(n). - Amiram Eldar, Sep 21 2024

Extensions

More terms from Erich Friedman

A063936 Numbers k such that the sum of unitary proper divisors of k is a square > 1.

Original entry on oeis.org

15, 26, 44, 56, 95, 96, 119, 122, 124, 140, 143, 194, 215, 216, 236, 287, 304, 364, 386, 407, 495, 511, 527, 551, 556, 560, 575, 639, 740, 752, 764, 780, 791, 794, 815, 871, 900, 935, 936, 992, 1004, 1036, 1116, 1159, 1196, 1199, 1232, 1295, 1328, 1346
Offset: 1

Views

Author

Felice Russo, Aug 31 2001

Keywords

Comments

A unitary divisor of n is a divisor d of n such that gcd(d, n/d) = 1.

Examples

			The unitary divisors of 15 are 1,3,5,15 and then the unitary aliquot part is 9 which is a square.
		

Crossrefs

Programs

  • Haskell
    import Data.List (findIndices)
    a063936 n = a063936_list !! (n-1)
    a063936_list = map (+ 1) $
                   findIndices (\x -> x > 1 && a010052 x == 1) a034460_list
    -- Reinhard Zumkeller, Aug 15 2012
  • Mathematica
    us[1] = 0; us[n_] := Times @@ (1 + Power @@@ FactorInteger[n]) - n; Select[Range[1500], (s = us[#]) > 1 && IntegerQ@Sqrt[s] &] (* Amiram Eldar, Mar 14 2020 *)
  • PARI
    us(n) = sumdiv(n,d, if(gcd(d,n/d)==1,d));
    j=[]; for(n=1,3000, if(us(n)-n > 1 && issquare(us(n)-n),j=concat(j,n))); j
    
  • PARI
    us(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d))
    { n=0; for (m=1, 10^9, u=us(m) - m; if (issquare(u) && u > 1, write("b063936.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 03 2009
    

Formula

A034460(a(n)) > 1 and A010052(A034460(a(n))) = 1. - Reinhard Zumkeller, Aug 15 2012

Extensions

More terms from Jason Earls, Sep 04 2001

A329239 Numbers k such that the sum of unitary divisors of k is a cube.

Original entry on oeis.org

1, 7, 102, 110, 120, 142, 159, 184, 187, 381, 588, 684, 690, 714, 770, 796, 840, 931, 994, 1034, 1054, 1065, 1113, 1128, 1173, 1240, 1265, 1288, 1293, 1309, 1528, 1633, 1643, 2619, 2667, 3638, 3937, 4280, 4505, 4664, 4788, 4830, 4855, 5176, 5572, 5671, 5730
Offset: 1

Views

Author

Amiram Eldar, Mar 13 2020

Keywords

Examples

			7 is a term since usigma(7) = 8 = 2^3, where usigma is A034448.
102 is a term since usigma(102) = 216 = 6^3.
		

Crossrefs

The unitary version of A020477.

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); Select[Range[10000], IntegerQ @ Surd[usigma [#], 3] &]
  • PARI
    isok(m) = ispower(sumdiv(m, d, if(gcd(d, m/d)==1, d)), 3); \\ Michel Marcus, Mar 15 2020
Showing 1-3 of 3 results.