cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A134030 Area of regular n-sided polygon with length of each side equal to 1 (rounded).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 15, 18, 20, 23, 26, 28, 32, 35, 38, 42, 46, 49, 54, 58, 62, 67, 71, 76, 81, 86, 92, 97, 103, 109, 115, 121, 127, 134, 140, 147, 154, 161, 168, 176, 183, 191, 199, 207, 215, 223, 232, 240, 249, 258, 267, 277, 286
Offset: 3

Views

Author

Ben Paul Thurston, Jan 11 2008

Keywords

Examples

			The exact values of the areas of regular n-gons with side 1 for n = 3 .. 12 are:
 (1/4)*3^(1/2), 1, (5/4)*cot((1/5)*Pi), (3/2)*3^(1/2), (7/4)*cot((1/7)*Pi), 2*cot((1/8)*Pi), (9/4)*cot((1/9)*Pi), (5/2)*cot((1/10)*Pi), (11/4)*cot((1/11)*Pi), 3*cot((1/12)*Pi).
The floating-point values are [0.4330127020, 1, 1.720477400, 2.598076212, 3.633912443, 4.828427124, 6.181824193, 7.694208842, 9.365639904, 11.19615242], so the rounded values are [0, 1, 2, 3, 4, 5, 6, 8, 9, 11]. - _N. J. A. Sloane_, Mar 11 2024
		

Crossrefs

Cf. A064313 (same with floor).

Programs

  • PARI
    a(n) = round(n / (4*tan(Pi/n))); \\ Michel Marcus, Sep 04 2013

Formula

a(n) = round(n/(4*tan(Pi/n))).

Extensions

Corrected by N. J. A. Sloane, Mar 11 2024 at the suggestion of Felix Huber

A337301 Triangle read by rows in which row n lists the closest integers to diagonal lengths of regular n-gon with unit edge length, n >= 4.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 3, 4, 4, 3, 3, 2, 2, 3, 3, 4, 4, 4, 3, 3, 2, 2, 3, 3, 4, 4, 4, 4, 3, 3, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 3, 2, 2, 3, 4, 4, 5, 5, 5, 5, 4, 4, 3, 2, 2, 3, 4, 4, 5, 5, 5, 5, 5, 4, 4, 3, 2
Offset: 4

Views

Author

Mohammed Yaseen, Aug 22 2020

Keywords

Examples

			Triangle begins:
1;
2, 2;
2, 2, 2;
2, 2, 2, 2;
2, 2, 3, 2, 2;
2, 3, 3, 3, 3, 2;
2, 3, 3, 3, 3, 3, 2;
2, 3, 3, 4, 4, 3, 3, 2;
2, 3, 3, 4, 4, 4, 3, 3, 2;
2, 3, 3, 4, 4, 4, 4, 3, 3, 2;
2, 3, 4, 4, 4, 4, 4, 4, 4, 3, 2;
2, 3, 4, 4, 5, 5, 5, 5, 4, 4, 3, 2;
2, 3, 4, 4, 5, 5, 5, 5, 5, 4, 4, 3, 2;
...
Row n lists the closest integers to the length of the diagonals drawn from a fixed vertex of a regular n-gon with unit edge length, n >= 4.
The lengths of the diagonals drawn from vertex A of a regular 8-gon ABCDEFGH with unit edge length are:
AC = 1.84775...
AD = 2.41421...
AE = 2.61312...
AF = 2.41421...
AG = 1.84775...
So the row for n=8 is 2, 2, 3, 2, 2.
		

Crossrefs

Cf. A064313.
Decimal expansion of diagonal lengths of regular n-gons with unit edge length:
n=4 A002193.
n=5 A001622.
n=9 A332437.
n=11 A231186.

Programs

  • Mathematica
    T[n_,k_]:=Round[Sin[(k+1)*Pi/n]/Sin[Pi/n]]; Flatten[Table[T[n,k],{n,4,16},{k,1,n-3}]] (* Stefano Spezia, Sep 07 2020 *)

Formula

T(n,k) = round(sin((k+1)*Pi/n)/sin(Pi/n)), n >= 4, 1 <= k <= n-3.

A374296 a(n) is the integer part of the area of a regular n-gon whose side lengths are n.

Original entry on oeis.org

3, 16, 43, 93, 178, 309, 500, 769, 1133, 1612, 2228, 3005, 3969, 5147, 6570, 8268, 10275, 12627, 15360, 18514, 22130, 26250, 30921, 36187, 42099, 48707, 56063, 64221, 73239, 83174, 94087, 106039, 119095, 133320, 148782, 165551, 183699, 203299
Offset: 3

Views

Author

Nicolay Avilov, Jul 03 2024

Keywords

Examples

			Areas of polygons (starting from n=3):
  3.897... (equilateral triangle), so a(3) = 3,
 16.000... (square), so a(4) = 16,
 43.011... (pentagon), so a(5) = 43,
 93.530... (hexagon), so a(6) = 93,
178.061... (heptagon), so a(7) = 178.
		

Crossrefs

Cf. A064313.

Formula

a(n) = floor(n^3/(4*tan(Pi/n))).
a(n) = n^4/(4*Pi) - (Pi/12)*n^2 + O(1). - Charles R Greathouse IV, Jul 03 2024

A343947 Surface area to volume ratio of a right prism with unit height and whose base is a regular n-gon with side length 1 (rounded to the nearest integer).

Original entry on oeis.org

9, 6, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 3

Views

Author

Wesley Ivan Hurt, May 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Round[(4 + 2 Cot[Pi/n])/Cot[Pi/n]], {n, 3, 100}]

Formula

a(n) = round((4 + 2*cot(Pi/n))/cot(Pi/n)).
Showing 1-4 of 4 results.