A134030
Area of regular n-sided polygon with length of each side equal to 1 (rounded).
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 15, 18, 20, 23, 26, 28, 32, 35, 38, 42, 46, 49, 54, 58, 62, 67, 71, 76, 81, 86, 92, 97, 103, 109, 115, 121, 127, 134, 140, 147, 154, 161, 168, 176, 183, 191, 199, 207, 215, 223, 232, 240, 249, 258, 267, 277, 286
Offset: 3
The exact values of the areas of regular n-gons with side 1 for n = 3 .. 12 are:
(1/4)*3^(1/2), 1, (5/4)*cot((1/5)*Pi), (3/2)*3^(1/2), (7/4)*cot((1/7)*Pi), 2*cot((1/8)*Pi), (9/4)*cot((1/9)*Pi), (5/2)*cot((1/10)*Pi), (11/4)*cot((1/11)*Pi), 3*cot((1/12)*Pi).
The floating-point values are [0.4330127020, 1, 1.720477400, 2.598076212, 3.633912443, 4.828427124, 6.181824193, 7.694208842, 9.365639904, 11.19615242], so the rounded values are [0, 1, 2, 3, 4, 5, 6, 8, 9, 11]. - _N. J. A. Sloane_, Mar 11 2024
A337301
Triangle read by rows in which row n lists the closest integers to diagonal lengths of regular n-gon with unit edge length, n >= 4.
Original entry on oeis.org
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 3, 4, 4, 3, 3, 2, 2, 3, 3, 4, 4, 4, 3, 3, 2, 2, 3, 3, 4, 4, 4, 4, 3, 3, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 3, 2, 2, 3, 4, 4, 5, 5, 5, 5, 4, 4, 3, 2, 2, 3, 4, 4, 5, 5, 5, 5, 5, 4, 4, 3, 2
Offset: 4
Triangle begins:
1;
2, 2;
2, 2, 2;
2, 2, 2, 2;
2, 2, 3, 2, 2;
2, 3, 3, 3, 3, 2;
2, 3, 3, 3, 3, 3, 2;
2, 3, 3, 4, 4, 3, 3, 2;
2, 3, 3, 4, 4, 4, 3, 3, 2;
2, 3, 3, 4, 4, 4, 4, 3, 3, 2;
2, 3, 4, 4, 4, 4, 4, 4, 4, 3, 2;
2, 3, 4, 4, 5, 5, 5, 5, 4, 4, 3, 2;
2, 3, 4, 4, 5, 5, 5, 5, 5, 4, 4, 3, 2;
...
Row n lists the closest integers to the length of the diagonals drawn from a fixed vertex of a regular n-gon with unit edge length, n >= 4.
The lengths of the diagonals drawn from vertex A of a regular 8-gon ABCDEFGH with unit edge length are:
AC = 1.84775...
AD = 2.41421...
AE = 2.61312...
AF = 2.41421...
AG = 1.84775...
So the row for n=8 is 2, 2, 3, 2, 2.
Decimal expansion of diagonal lengths of regular n-gons with unit edge length:
-
T[n_,k_]:=Round[Sin[(k+1)*Pi/n]/Sin[Pi/n]]; Flatten[Table[T[n,k],{n,4,16},{k,1,n-3}]] (* Stefano Spezia, Sep 07 2020 *)
A374296
a(n) is the integer part of the area of a regular n-gon whose side lengths are n.
Original entry on oeis.org
3, 16, 43, 93, 178, 309, 500, 769, 1133, 1612, 2228, 3005, 3969, 5147, 6570, 8268, 10275, 12627, 15360, 18514, 22130, 26250, 30921, 36187, 42099, 48707, 56063, 64221, 73239, 83174, 94087, 106039, 119095, 133320, 148782, 165551, 183699, 203299
Offset: 3
Areas of polygons (starting from n=3):
3.897... (equilateral triangle), so a(3) = 3,
16.000... (square), so a(4) = 16,
43.011... (pentagon), so a(5) = 43,
93.530... (hexagon), so a(6) = 93,
178.061... (heptagon), so a(7) = 178.
A343947
Surface area to volume ratio of a right prism with unit height and whose base is a regular n-gon with side length 1 (rounded to the nearest integer).
Original entry on oeis.org
9, 6, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 3
Showing 1-4 of 4 results.