cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064412 At stage 1, start with a unit equilateral equiangular triangle. At each successive stage add 3*(n-1) new triangles around outside with edge-to-edge contacts. Sequence gives number of triangles (regardless of size) at n-th stage.

Original entry on oeis.org

1, 5, 14, 32, 60, 103, 160, 238, 335, 459, 606, 786, 994, 1241, 1520, 1844, 2205, 2617, 3070, 3580, 4136, 4755, 5424, 6162, 6955, 7823, 8750, 9758, 10830, 11989, 13216, 14536, 15929, 17421, 18990, 20664, 22420, 24287, 26240, 28310, 30471, 32755, 35134, 37642
Offset: 1

Views

Author

Robert G. Wilson v, Sep 29 2001

Keywords

Comments

Number of unit triangles at n-th stage = 3n(n-1)/2 + 1, A005448.

Examples

			a(4) = 32: 19 triangles of side 1, 10 of side 2 and 3 of side 3.
		

References

  • Anthony Gardiner, "Mathematical Puzzling," Dover Publications, Inc., Mineola, NY., 1987, page 88.

Crossrefs

Cf. A056640.

Programs

  • Maple
    A064412:=n->(14*n^3+6*n^2+5*n+7+3*(n-1)*(-1)^n-2*((-1)^((2*n-1+(-1)^n)/4)+(-1)^((6*n-1+(-1)^n)/4)))/32; seq(A064412(n), n=1..30); # Wesley Ivan Hurt, Jun 27 2014
  • Mathematica
    CoefficientList[Series[(1 + x + x^2) (1 + 2 x + x^2 + 3 x^3)/((1 - x)^2 (1 - x^2) (1 - x^4)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jun 27 2014 *)
    LinearRecurrence[{2,0,-2,2,-2,0,2,-1},{1,5,14,32,60,103,160,238},50] (* Harvey P. Dale, Apr 12 2016 *)
  • PARI
    a(n)=polcoeff(x*(1+x+x^2)*(1+2*x+x^2+3*x^3)/((1-x)^2*(1-x^2)*(1-x^4))+x*O(x^n),n)

Formula

G.f.: (1+x+x^2)(1+2x+x^2+3x^3)/((1-x)^2(1-x^2)(1-x^4)).
a(2n+1) = (7n^3+12n^2+7n+2)/2; a(2n) = (28n^3+6n^2+4n+1+(-1)^(n+1))/8. - Len Smiley, Oct 07 2001
a(n) = (14*n^3+6*n^2+5*n+7+3*(n-1)*(-1)^n-2*((-1)^((2*n-1+(-1)^n)/4)+(-1)^((6*n-1+(-1)^n)/4)))/32. - Luce ETIENNE, Jun 27 2014