A064412 At stage 1, start with a unit equilateral equiangular triangle. At each successive stage add 3*(n-1) new triangles around outside with edge-to-edge contacts. Sequence gives number of triangles (regardless of size) at n-th stage.
1, 5, 14, 32, 60, 103, 160, 238, 335, 459, 606, 786, 994, 1241, 1520, 1844, 2205, 2617, 3070, 3580, 4136, 4755, 5424, 6162, 6955, 7823, 8750, 9758, 10830, 11989, 13216, 14536, 15929, 17421, 18990, 20664, 22420, 24287, 26240, 28310, 30471, 32755, 35134, 37642
Offset: 1
Examples
a(4) = 32: 19 triangles of side 1, 10 of side 2 and 3 of side 3.
References
- Anthony Gardiner, "Mathematical Puzzling," Dover Publications, Inc., Mineola, NY., 1987, page 88.
Links
- N. J. A. Sloane, Illustration of initial terms
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,2,-2,0,2,-1).
Crossrefs
Cf. A056640.
Programs
-
Maple
A064412:=n->(14*n^3+6*n^2+5*n+7+3*(n-1)*(-1)^n-2*((-1)^((2*n-1+(-1)^n)/4)+(-1)^((6*n-1+(-1)^n)/4)))/32; seq(A064412(n), n=1..30); # Wesley Ivan Hurt, Jun 27 2014
-
Mathematica
CoefficientList[Series[(1 + x + x^2) (1 + 2 x + x^2 + 3 x^3)/((1 - x)^2 (1 - x^2) (1 - x^4)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jun 27 2014 *) LinearRecurrence[{2,0,-2,2,-2,0,2,-1},{1,5,14,32,60,103,160,238},50] (* Harvey P. Dale, Apr 12 2016 *)
-
PARI
a(n)=polcoeff(x*(1+x+x^2)*(1+2*x+x^2+3*x^3)/((1-x)^2*(1-x^2)*(1-x^4))+x*O(x^n),n)
Formula
G.f.: (1+x+x^2)(1+2x+x^2+3x^3)/((1-x)^2(1-x^2)(1-x^4)).
a(2n+1) = (7n^3+12n^2+7n+2)/2; a(2n) = (28n^3+6n^2+4n+1+(-1)^(n+1))/8. - Len Smiley, Oct 07 2001
a(n) = (14*n^3+6*n^2+5*n+7+3*(n-1)*(-1)^n-2*((-1)^((2*n-1+(-1)^n)/4)+(-1)^((6*n-1+(-1)^n)/4)))/32. - Luce ETIENNE, Jun 27 2014
Comments