cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A275112 Zero together with the partial sums of A064412.

Original entry on oeis.org

0, 1, 6, 20, 52, 112, 215, 375, 613, 948, 1407, 2013, 2799, 3793, 5034, 6554, 8398, 10603, 13220, 16290, 19870, 24006, 28761, 34185, 40347, 47302, 55125, 63875, 73633, 84463, 96452, 109668, 124204, 140133, 157554, 176544, 197208, 219628, 243915, 270155, 298465, 328936, 361691, 396825, 434467, 474717, 517710, 563550, 612378, 664303, 719472
Offset: 0

Views

Author

Luce ETIENNE, Jul 17 2016

Keywords

Crossrefs

Programs

  • Mathematica
    {0}~Join~Accumulate@ CoefficientList[Series[(1 + x + x^2) (1 + 2 x + x^2 + 3 x^3)/((1 - x)^2 (1 - x^2) (1 - x^4)), {x, 0, 49}], x] (* Michael De Vlieger, Jul 18 2016, after Wesley Ivan Hurt at A064412, or *)
    Table[(14 n^4 + 36 n^3 + 36 n^2 + 42 n + 11 + 3 (2 n - 1) (-1)^n - 8 (-1)^(((2 n - 1 + (-1)^n))/4))/128, {n, 50}] (* Michael De Vlieger, Jul 18 2016 *)
    LinearRecurrence[{3,-2,-2,4,-4,2,2,-3,1},{0,1,6,20,52,112,215,375,613},60] (* Harvey P. Dale, Jun 19 2022 *)
  • PARI
    concat(0, Vec(x*(1+x+x^2)*(1+2*x+x^2+3*x^3)/((1-x)^5*(1+x)^2*(1+x^2)) + O(x^50))) \\ Colin Barker, Jul 18 2016

Formula

a(n) = (28*n^4+36*n^3+18*n^2+12*n+(1-(-1)^n))/16 for n even.
a(n) = (28*n^4+92*n^3+114*n^2+68*n+17-(-1)^n)/16 for n odd.
a(n) = (14*n^4+36*n^3+36*n^2+42*n+11+3*(2*n-1)*(-1)^n-8*(-1)^(((2*n-1+(-1)^n))/4))/128.
G.f.: x*(1+x+x^2)*(1+2*x+x^2+3*x^3) / ((1-x)^5*(1+x)^2*(1+x^2)). - Colin Barker, Jul 18 2016

A085601 a(n) = 2 * (4^n + 2^n) + 1.

Original entry on oeis.org

5, 13, 41, 145, 545, 2113, 8321, 33025, 131585, 525313, 2099201, 8392705, 33562625, 134234113, 536903681, 2147549185, 8590065665, 34360000513, 137439477761, 549756862465, 2199025352705, 8796097216513, 35184380477441
Offset: 0

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Jul 07 2003

Keywords

Comments

1. Begin with a square tile.
2. Place square tiles on each edge to form a diamond shape.
3. Count the tiles: a(0) = 5.
4. Add tiles to fill the enclosing square.
5. Go to step 2.

Crossrefs

Cf. A343175 (essentially the same).

Programs

  • Mathematica
    Table[2(4^n+2^n)+1,{n,0,30}] (* or *) LinearRecurrence[{7,-14,8},{5,13,41},30] (* Harvey P. Dale, Dec 30 2017 *)
  • PARI
    first(n) = Vec((5 - 22*x + 20*x^2)/(1 - 7*x + 14*x^2 - 8*x^3) + O(x^n)) \\ Iain Fox, Dec 30 2017

Formula

From R. J. Mathar, Apr 20 2009: (Start)
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3).
G.f.: -(5 - 22*x + 20*x^2)/((x - 1)*(2*x - 1)*(4*x - 1)).
(End)
E.g.f.: e^x + 2*(e^(2*x) + e^(4*x)). - Iain Fox, Dec 30 2017

Extensions

Edited by Franklin T. Adams-Watters and Don Reble, Aug 15 2006

A282513 a(n) = floor((3*n + 2)^2/24 + 1/3).

Original entry on oeis.org

0, 1, 3, 5, 8, 12, 17, 22, 28, 35, 43, 51, 60, 70, 81, 92, 104, 117, 131, 145, 160, 176, 193, 210, 228, 247, 267, 287, 308, 330, 353, 376, 400, 425, 451, 477, 504, 532, 561, 590, 620, 651, 683, 715, 748, 782, 817, 852, 888, 925, 963
Offset: 0

Views

Author

Luce ETIENNE, Feb 17 2017

Keywords

Comments

List of quadruples: 2*n*(3*n+1), (2*n+1)*(3*n+1), 6*n^2+8*n+3, (n+1)*(6*n+5). These terms belong to the sequences A033580, A033570, A126587 and A049452, respectively. See links for all the permutations.
After 0, subsequence of A025767.
It seems that a(n) is the smallest number of cells that need to be painted in a (n+1) X (n+1) grid, such that it has no unpainted hexominoes (see link to Kamenetsky and Pratt). - Rob Pratt, Dmitry Kamenetsky, Aug 30 2020

Examples

			Rectangular array with four columns:
.   0,   1,   3,   5;
.   8,  12,  17,  22;
.  28,  35,  43,  51;
.  60,  70,  81,  92;
. 104, 117, 131, 145, etc.
From _Rob Pratt_, Aug 30 2020: (Start)
For n = 3, painting only 2 cells would leave an unpainted hexomino, but painting the following 3 cells avoids all unpainted hexominoes:
    . . .
    . . X
    X X .
(End)
		

Crossrefs

Cf. A033436: floor((3*n)^2/24 + 1/3).
Cf. A130519.
Minimum number of painted cells in other n-ominoes: A337501, A337502, A337503.

Programs

  • Magma
    [(3*n^2+4*n+4) div 8: n in [0..50]]; // Bruno Berselli, Feb 17 2017
  • Mathematica
    Table[Floor[(3 n + 2)^2/24 + 1/3], {n, 0, 50}] (* or *) CoefficientList[Series[x (1 + x + x^3)/((1 + x) (1 + x^2) (1 - x)^3), {x, 0, 50}], x] (* or *) Table[(6 n^2 + 8 n + 3 + Cos[n Pi] - 4 Cos[n Pi/2])/16, {n, 0, 50}] (* or *) Table[(3 n + 2)^2/24 + 1/3 + (-6 + (1 + (-1)^n) (1 + 2 I^((n + 1) (n + 2))))/16, {n, 0, 50}] (* Michael De Vlieger, Feb 17 2017 *)
    LinearRecurrence[{2,-1,0,1,-2,1},{0,1,3,5,8,12},60] (* Harvey P. Dale, Aug 10 2024 *)
  • PARI
    a(n)=(3*n^2 + 4*n + 4)\8 \\ Charles R Greathouse IV, Feb 17 2017
    

Formula

G.f.: x*(1 + x + x^3)/((1 + x)*(1 + x^2)*(1 - x)^3).
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n>5.
a(n) = floor((3*n + 2)^2/24 + 2/3).
a(n) = (6*n^2 + 8*n + 3 + (-1)^n - 2*((-1)^((2*n - 1 + (-1)^n)/4) + (-1)^((2*n + 1 - (-1)^n)/4)))/16. Therefore:
a(2*k) = (6*k^2 + 4*k + 1 - (-1)^k)/4,
a(2*k+1) = (k + 1)*(3*k + 2)/2.
a(n) = (6*n^2 + 8*n + 3 + cos(n*Pi) - 4*cos(n*Pi/2))/16.
a(n) = (3*n + 2)^2/24 + 1/3 + (-6 + (1 + (-1)^n)*(1 + 2*i^((n+1)*(n+2))))/16, where i=sqrt(-1).
a(n) = A130519(n+3)+A130519(n+2)+A130519(n). - R. J. Mathar, Jun 23 2021

Extensions

Corrected and extended by Bruno Berselli, Feb 17 2017

A269064 At stage 1, start with a unit equilateral triangle. At each successive stage add 3*(n-1) new triangles around outside with vertex-to-vertex contacts. Sequence gives number of triangles at n-th stage.

Original entry on oeis.org

0, 1, 4, 10, 26, 48, 87, 135, 208, 293, 410, 542, 714, 904, 1141, 1399, 1712, 2049, 2448, 2874, 3370, 3896, 4499, 5135, 5856, 6613, 7462, 8350, 9338, 10368, 11505, 12687, 13984, 15329, 16796, 18314, 19962, 21664, 23503, 25399, 27440, 29541, 31794, 34110, 36586, 39128, 41837, 44615, 47568
Offset: 0

Views

Author

Luce ETIENNE, Feb 18 2016

Keywords

Comments

At stage n, we count (6*n^2-6*n+5-3*(2*n-1)*(-1)^n)/8 unit up-pointing triangles and 3*(2*n^2-2*n+1+(2*n-1)*(-1)^n)/8 unit down-pointing triangles.
At stage n, the total number of unit triangles is (3*n^2-3*n+2)/2 = A005448(n). It is the same total as for A064412. Note also that A064412 gives number of triangles in a geometrical structure according to expansion side-side (mode S-S).
The edges of several unit triangles can form larger size triangles, and these are also up- or down-pointing. The number of all such larger is given by :(14*n^3-9*n^2+11*n+18-(9*n^2+3*n+14)*(-1)^n-4*((-1)^((2*n+1-(-1)^n)/4)))/64 up-pointing triangles and (14*n^3-15*n^2+35*n-6+(9*n^2+21*n+2)*(-1)^n+4*((-1)^((2*n-1+(-1)^n)/4)))/64 down-pointing triangles.
As for A265282 we observe that starting with n = 4 we can see and count hexagonal and dodecagonal forms for example in a reticular system (incomplete with hexagonal holes) by opposition to a compact shape A064412.

Examples

			a(0)= 0, a(1) = 1, a(2) = 4, a(3) = 7+3 = 10, a(4) = 19 + 6 + 1 = 26, a(5) = 31 + 12 + 4 + 1 = 48.
		

Crossrefs

Programs

  • Magma
    [(14*n^3-12*n^2+23*n+6+3*(3*n-2)*(-1)^n+2*((-1)^((2*n-1+(-1)^n) div 4)-(-1)^((6*n-1+(-1)^n) div 4)))/32: n in [0..50]]; // Vincenzo Librandi, Feb 19 2016
    
  • Mathematica
    Table[(14 n^3 - 12 n^2 + 23 n + 6 + 3 (3 n - 2) (-1)^n + 2 ((-1)^((2*n - 1 + (-1)^n) / 4) - (-1)^((6 n - 1 + (-1)^n) / 4))) / 32, {n, 0, 45}] (* Vincenzo Librandi, Feb 19 2016 *)
  • PARI
    concat(0, Vec(x*(1+2*x+2*x^2+8*x^3+2*x^4+5*x^5+x^6)/((1-x)^4*(1+x)^2*(1+x^2)) + O(x^50))) \\ Colin Barker, Feb 24 2016

Formula

a(n) = (7*n^3-3*n^2+4*n)/2 for n even.
a(n) = (28*n^3+30*n^2+16*n+7+(-1)^n)/8 for n odd.
a(n) = (14*n^3-12*n^2+23*n+6+3*(3*n-2)*(-1)^n+2*((-1)^((2*n-1+(-1)^n)/4)-(-1)^((6*n-1+(-1)^n)/4)))/32.
G.f.: x*(1+2*x+2*x^2+8*x^3+2*x^4+5*x^5+x^6) / ((1-x)^4*(1+x)^2*(1+x^2)). - Colin Barker, Feb 24 2016

A274221 List of quadruples: 3*n*(3*n-1), 3*n*(3*n+1), (3*n+1)^2, (3*n+2)^2.

Original entry on oeis.org

0, 0, 1, 4, 6, 12, 16, 25, 30, 42, 49, 64, 72, 90, 100, 121, 132, 156, 169, 196, 210, 240, 256, 289, 306, 342, 361, 400, 420, 462, 484, 529, 552, 600, 625, 676, 702, 756, 784, 841, 870, 930, 961, 1024, 1056, 1122, 1156, 1225, 1260, 1332, 1369, 1444, 1482
Offset: 0

Views

Author

Luce ETIENNE, Sep 14 2016

Keywords

Comments

For the formulae of the permutations of A152743, A045945, A016778 and A016790, see the link.

Crossrefs

Programs

  • Magma
    &cat [[3*n*(3*n-1), 3*n*(3*n+1), (3*n+1)^2, (3*n+2)^2]: n in [0..15]]; // Bruno Berselli, Sep 15 2016
  • Mathematica
    Flatten[Table[{3 n (3 n - 1), 3 n (3 n + 1), (3 n + 1)^2, (3 n + 2)^2}, {n, 0, 15}]] (* Bruno Berselli, Sep 15 2016 *)

Formula

G.f.: x^2*(1+3*x+x^2+3*x^3+x^4)/((1-x)^3*(1+x)^2*(1+x^2)). - Robert Israel, Sep 15 2016
a(n) = (18*n^2-18*n+1-3*(2*n-1)*(-1)^n-4*(-1)^((2*n-1+(-1)^n)/4))/32. Therefore: a(2k) = (18*k^2-12*k+1-(-1)^k)/8, a(2k+1) = (18*k^2+12*k+1-(-1)^k)/8.
a(n) = A064412(n) - A269064(n) for n>0.
E.g.f.: ((9*x^2 - 3*x - 1)*sinh(x) + (9*x^2 + 3*x + 2)*cosh(x) - 2*(sin(x) + cos(x)))/16. - Stefano Spezia, Nov 07 2022

A213801 Number of 3 X 3 0..n symmetric arrays with all rows summing to floor(n*3/2).

Original entry on oeis.org

4, 13, 29, 57, 96, 153, 226, 323, 440, 587, 759, 967, 1204, 1483, 1796, 2157, 2556, 3009, 3505, 4061, 4664, 5333, 6054, 6847, 7696, 8623, 9611, 10683, 11820, 13047, 14344, 15737, 17204, 18773, 20421, 22177, 24016, 25969, 28010, 30171, 32424, 34803, 37279
Offset: 1

Views

Author

R. H. Hardin, Jun 20 2012

Keywords

Comments

Row 3 of A213800.
Sequence is difference between numbers of triangles, regardless of size, in A064412 (a family of ((3*n^2+3*n+2)/2)-iamonds, see also illustration of initial terms there) and a quantity A077043 of triangles of dimension 1. - Luce ETIENNE, Aug 23 2014

Examples

			Some solutions for n=4:
..1..3..2....2..4..0....0..4..2....1..2..3....1..1..4....4..0..2....2..2..2
..3..1..2....4..0..2....4..0..2....2..2..2....1..3..2....0..2..4....2..2..2
..2..2..2....0..2..4....2..2..2....3..2..1....4..2..0....2..4..0....2..2..2
a(2)=5-1=4, a(3)=14-1=13, a(210)=4118206-8269=4109937. - _Luce ETIENNE_, Aug 23 2014
		

Crossrefs

Formula

Empirical: a(n) = 2*a(n-1) -2*a(n-3) +2*a(n-4) -2*a(n-5) +2*a(n-7) -a(n-8).
Empirical: G.f. -x*(-4-5*x-3*x^2-7*x^3-x^5-2*x^6+x^7) / ( (x^2+1)*(1+x)^2*(x-1)^4 ). - R. J. Mathar, Jul 04 2012
a(n) = (14*n^3+42*n^2+53*n+25+3*(n+1)*(-1)^n+2*((-1)^((2*n+1-(-1)^n)/4)-(-1)^((6*n+5-(-1)^n)/4)))/32. - Luce ETIENNE, Aug 23 2014
a(n) = A064412(n+1) - A077043((2*n+1-(-1)^n)/4). - Luce ETIENNE, Aug 23 2014
Showing 1-6 of 6 results.