cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A102083 a(n) = 8*n^2 + 4*n + 1.

Original entry on oeis.org

1, 13, 41, 85, 145, 221, 313, 421, 545, 685, 841, 1013, 1201, 1405, 1625, 1861, 2113, 2381, 2665, 2965, 3281, 3613, 3961, 4325, 4705, 5101, 5513, 5941, 6385, 6845, 7321, 7813, 8321, 8845, 9385, 9941, 10513, 11101, 11705, 12325, 12961, 13613, 14281, 14965, 15665
Offset: 0

Views

Author

N. J. A. Sloane, Feb 14 2005

Keywords

Comments

If Y and Z are 2-blocks of a 2n-set X then, for n>=2, a(n-2) is the number of 4-subsets of X intersecting both Y and Z. - Milan Janjic, Nov 18 2007
Equals binomial transform of [1, 12, 16, 0, 0, 0, ...]. - Gary W. Adamson, Jul 19 2008
Sequence found by reading the line from 1, in the direction 1, 13, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Sep 05 2011
First differences of A100157. - John Molokach, Jul 10 2013

Crossrefs

Programs

Formula

G.f.: (1+10*x+5*x^2)/(1-x)^3. - Paul Barry, Jun 04 2005
a(n) = 4*(4*n-1)+a(n-1) (with a(0)=1). - Vincenzo Librandi, Nov 16 2010
E.g.f.: (8*x^2 + 12*x + 1)*exp(x). - G. C. Greubel, Jul 14 2017

A220978 a(n) = 3^(2*n+1) - 3^(n+1) + 1: The left Aurifeuillian factor of 3^(6*n+3) + 1.

Original entry on oeis.org

1, 19, 217, 2107, 19441, 176419, 1592137, 14342347, 129120481, 1162202419, 10460176057, 94142647387, 847287015121, 7625592702019, 68630363015977, 617673353237227, 5559060437415361, 50031544711579219, 450283904728735897, 4052555149532191867
Offset: 0

Views

Author

Stuart Clary, Dec 27 2012

Keywords

Comments

The corresponding right Aurifeuillian factor is A198410(n+2): 3^(6*n+3) + 1 = (3^(2*n+1) + 1) * a(n) * A198410(n+2).

Crossrefs

Programs

  • Mathematica
    Table[3^(2n+1) - 3^(n+1) + 1, {n, 0, 30}]
    LinearRecurrence[{13,-39,27},{1,19,217},30] (* Harvey P. Dale, Mar 17 2013 *)
  • PARI
    Vec((1 + 3*x)^2/((1 - x)*(1 - 3*x)*(1 - 9*x)) + O(x^30)) \\ Michel Marcus, Feb 12 2015

Formula

a(n) = 13*a(n-1) - 39*a(n-2) + 27*a(n-3).
G.f.: (1 + 3*x)^2/((1 - x)*(1 - 3*x)*(1 - 9*x)).

A220979 a(n) = 5^(4n+2) - 5^(3n+2) + 3 * 5^(2n+1) - 5^(n+1) + 1: the left Aurifeuillian factor of 5^(10n+5) - 1.

Original entry on oeis.org

11, 12851, 9384251, 6054921251, 3808599606251, 2383422998031251, 1490020755615156251, 931310653778075781251, 582075119020843503906251, 363797694444713592519531251, 227373652160169124603222656251, 142108544241637027263641113281251
Offset: 0

Views

Author

Stuart Clary, Dec 27 2012

Keywords

Comments

The corresponding right Aurifeuillian factor is A220980.

Crossrefs

Programs

  • Mathematica
    Table[5^(4n+2) - 5^(3n+2) + 3 * 5^(2n+1) - 5^(n+1) + 1, {n, 0, 30}]
  • PARI
    a(n)=5^(4*n+2)-5^(3*n+2)+3*5^(2*n+1)-5^(n+1)+1 \\ Charles R Greathouse IV, Sep 28 2015

Formula

Aurifeuillian factorization: 5^(10n+5) - 1 = (5^(2n+1) - 1) * a(n) * A220980(n).
G.f.: -(4296875*x^4+2662500*x^3+464450*x^2+4260*x+11) / ((x-1)*(5*x-1)*(25*x-1)*(125*x-1)*(625*x-1)). - Colin Barker, Jan 03 2013

A220990 a(n) = 12^(2n+1) + 6 * 12^n + 1: the right Aurifeuillian factor of 12^(6n+3) + 1.

Original entry on oeis.org

19, 1801, 249697, 35842177, 5159904769, 743009863681, 106993223294977, 15407021789577217, 2218611109320327169, 319479999401581608961, 46005119909741205651457, 6624737266953695061344257, 953962166440743626203987969
Offset: 0

Views

Author

Stuart Clary, Dec 27 2012

Keywords

Comments

The corresponding left Aurifeuillian factor is A220989.

Crossrefs

Programs

  • Mathematica
    Table[12^(2n+1) + 6 * 12^n + 1, {n, 0, 10}]
    LinearRecurrence[{157,-1884,1728},{19,1801,249697},20] (* Harvey P. Dale, Mar 26 2022 *)
  • PARI
    a(n)=12^(2*n+1)+6*12^n+1 \\ Charles R Greathouse IV, Sep 28 2015

Formula

Aurifeuillian factorization: 12^(6n+3) + 1 = (12^(2n+1) + 1) * A220989(n) * a(n).
G.f.: -(2736*x^2-1182*x+19) / ((x-1)*(12*x-1)*(144*x-1)). - Colin Barker, Jan 03 2013

A220983 The left Aurifeuillian factor of 7^(14n+7) + 1.

Original entry on oeis.org

113, 34925927, 4651514210561, 556919483179733591, 65684998500756890925713, 7730533744900130305342957127, 909535949164303794596648514307361, 107006774488854204226839526889653524791, 12589253114717671385404089651370543317211313
Offset: 0

Views

Author

Stuart Clary, Dec 27 2012

Keywords

Comments

The corresponding right Aurifeuillian factor is A220984.

Crossrefs

Programs

  • Mathematica
    Table[7^(6n+3) - 7^(5n+3) + 3 * 7^(4n+2) - 7^(3n+2) + 3 * 7^(2n+1) - 7^(n+1) + 1, {n, 0, 20}]

Formula

a(n) = 7^(6n+3) - 7^(5n+3) + 3 * 7^(4n+2) - 7^(3n+2) + 3 * 7^(2n+1) - 7^(n+1) + 1.
Aurifeuillian factorization: 7^(14n+7) + 1 = (7^(2n+1) + 1) * a(n) * A220984(n).
G.f.: -(184010736563880737*x^6 +268740854387875086*x^5 +14564007567924591*x^4 +73553506117028*x^3 +123792021759*x^2 +19415886*x +113) / ((x -1)*(7*x -1)*(49*x -1)*(343*x -1)*(2401*x -1)*(16807*x -1)*(117649*x -1)). [Colin Barker, Jan 04 2013]

A220984 The right Aurifeuillian factor of 7^(14n+7) + 1.

Original entry on oeis.org

911, 46489241, 4845303761663, 560176314330212777, 65739735996793498937711, 7731453717973685046293120441, 909551411151743369070229385367263, 107007034358477098527617255914118283977, 12589257482346423369016062830670344414194511
Offset: 0

Views

Author

Stuart Clary, Dec 27 2012

Keywords

Comments

The corresponding left Aurifeuillian factor is A220983.

Crossrefs

Programs

  • Mathematica
    Table[7^(6n+3) + 7^(5n+3) + 3 * 7^(4n+2) + 7^(3n+2) + 3 * 7^(2n+1) + 7^(n+1) + 1, {n, 0, 20}]

Formula

a(n) = 7^(6n+3) + 7^(5n+3) + 3 * 7^(4n+2) + 7^(3n+2) + 3 * 7^(2n+1) + 7^(n+1) + 1.
Aurifeuillian factorization: 7^(14n+7) + 1 = (7^(2n+1) + 1) * A220983(n) * a(n).
G.f.: -(1483484787696419039*x^6 -1087259214306211086*x^5 +71725962948861585*x^4 -562870083909028*x^3 +609660625665*x^2 -78551886*x +911) / ((x -1)*(7*x -1)*(49*x -1)*(343*x -1)*(2401*x -1)*(16807*x -1)*(117649*x -1)). [Colin Barker, Jan 04 2013]

A229768 Largest prime factor of 2^(2*n+1)+2^(n+1)+1.

Original entry on oeis.org

13, 41, 29, 109, 2113, 157, 1321, 26317, 525313, 1429, 1657, 268501, 279073, 536903681, 49477, 4327489, 7416361, 231769777, 21841, 43249589, 500177, 29247661, 7484047069, 19707683773, 1326700741, 586477649, 3630105520141, 275415303169, 104399276341
Offset: 1

Views

Author

Colin Barker, Sep 29 2013

Keywords

Comments

2^(2*n+1)+2^(n+1)+1 is a factor of 4^(2*n+1)+1.

Examples

			For n=10, 2^(2*n+1)+2^(n+1)+1 = 2099201 = 13*113*1429, so a(10)=1429.
		

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[2^(2n+1)+2^(n+1)+1][[-1,1]],{n,30}] (* Harvey P. Dale, Nov 03 2017 *)
  • PARI
    a(n) = {f=factor(2^(2*n+1)+2^(n+1)+1); f[matsize(f)[1],1]}

A257418 Number of pieces after a sheet of paper is folded n times and cut diagonally.

Original entry on oeis.org

2, 3, 5, 8, 13, 23, 41, 77, 145, 281, 545, 1073, 2113, 4193, 8321, 16577, 33025, 65921, 131585, 262913, 525313, 1050113, 2099201, 4197377, 8392705, 16783361, 33562625, 67121153, 134234113, 268460033, 536903681, 1073790977, 2147549185, 4295065601, 8590065665
Offset: 0

Views

Author

Dirk Frettlöh, Apr 22 2015

Keywords

Comments

Fold a rectangular sheet of paper in half (fold lower half up), and again into half (left half to the right), and again (lower half up), and again (left half to the right)... making n folds in all. Cut along the diagonal line from top left to bottom right of the resulting small rectangle. Sequence gives the number of pieces that are formed.
The even-numbered entries of this sequence are A343175 (essentially A085601). The odd numbered entries are A343176 (essentially A036562). [These bisections are easy to analyze and have simpler formulas. - N. J. A. Sloane, Apr 26 2021]

Examples

			n=1: Take a rectangular sheet of paper and fold it in half. Cutting along the diagonal of the resulting rectangle yields 3 smaller pieces of paper.
n=0: Cutting the sheet of paper (without any folding) along the diagonal yields two pieces.
		

Crossrefs

Programs

  • Magma
    [2,3,5,8] cat [Floor((2^n+2^(n/2)*(1+(-1)^n+3*Sqrt(2)*(1-(-1)^n)/4)+2)/2):n in [4..40]]; // Vincenzo Librandi, May 05 2015
  • Maple
    2, seq(floor((2^n+2^(n/2)*(1+(-1)^n+3*sqrt(2)*(1-(-1)^n)/4)+2)/2),n=1..25);
  • Mathematica
    Table[Floor[(2^n + 2^(n/2)*(1 + (-1)^n + 3 Sqrt[2]*(1 - (-1)^n)/4) + 2)/2], {n, 0, 25}] (* Michael De Vlieger, Apr 24 2015 *)
  • PARI
    concat(2,vector(30,n,round((2^n+2^(n/2)*(1+(-1)^n+3*sqrt(2)*(1-(-1)^n)/4)+2)/2))) \\ Derek Orr, Apr 27 2015
    
  • PARI
    Vec((2 - 3*x - 4*x^2 + 5*x^3 - x^4 + 2*x^5) / ((1 - x)*(1 - 2*x)*(1 - 2*x^2)) + O(x^35)) \\ Colin Barker, Feb 05 2020
    

Formula

a(n) = (2^n+2^(n/2)*(1+(-1)^n+3*sqrt(2)*(1-(-1)^n)/4)+2)/2 for n>1. (Johan Nilsson)
a(0) = 2, a(1) = 3, a(n+1) = 2*a(n)-2^(floor((n-1)/2))-1.
G.f.: -(2*x^5-x^4+5*x^3-4*x^2-3*x+2)/((x-1)*(2*x-1)*(2*x^2-1)). - Alois P. Heinz, Apr 23 2015
a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4) for n>5. - Colin Barker, Feb 05 2020
E.g.f.: (1/4)*(-2 - 2*x + 2*cosh(2*x) + 4*cosh(sqrt(2)*x) + 4*sinh(x) + 4*cosh(x)*(1 + sinh(x)) + 3*sqrt(2)*sinh(sqrt(2)*x)). - Stefano Spezia, Feb 05 2020

A281482 a(n) = 2^(n + 1) * (2^n + 1) - 1.

Original entry on oeis.org

3, 11, 39, 143, 543, 2111, 8319, 33023, 131583, 525311, 2099199, 8392703, 33562623, 134234111, 536903679, 2147549183, 8590065663, 34360000511, 137439477759, 549756862463, 2199025352703, 8796097216511, 35184380477439, 140737505132543, 562949986975743
Offset: 0

Views

Author

Jaroslav Krizek, Jan 22 2017

Keywords

Crossrefs

Similar sequences: A085601 (2^(n + 1) * (2^n + 1) + 1), A092431 (2^(n - 1) * (2^n + 1) - 1), A092440 (2^(n + 1) * (2^n - 1) + 1), A129868 (2^(n - 1) * (2^n - 1) - 1), A134169 (2^(n - 1) * (2^n - 1) + 1), A267816 (2^(n + 1) * (2^n - 1) - 1), A281481 (2^(n - 1) * (2^n + 1) + 1).

Programs

  • Magma
    [2^(n + 1) * (2^n + 1) - 1: n in [0..200]];
    
  • PARI
    Vec((3 - 10*x + 4*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Jan 22 2017

Formula

From Colin Barker, Jan 22 2017: (Start)
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3) for n>2.
G.f.: (3 - 10*x + 4*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)).
(End)

A343175 a(0)=2; for n > 0, a(n) = 2^(2*n-1) + 2^n + 1.

Original entry on oeis.org

2, 5, 13, 41, 145, 545, 2113, 8321, 33025, 131585, 525313, 2099201, 8392705, 33562625, 134234113, 536903681, 2147549185, 8590065665, 34360000513, 137439477761, 549756862465, 2199025352705, 8796097216513, 35184380477441, 140737505132545, 562949986975745, 2251799880794113
Offset: 0

Views

Author

N. J. A. Sloane, Apr 26 2021

Keywords

Comments

A bisection of A257418. Apart from first term, same as A085601.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7,-14,8},{2,5,13,41},30] (* Harvey P. Dale, Aug 04 2024 *)

Formula

From Chai Wah Wu, Apr 26 2021: (Start)
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3) for n > 3.
G.f.: (-4*x^3 - 6*x^2 + 9*x - 2)/((x - 1)*(2*x - 1)*(4*x - 1)). (End)

Extensions

a(18)-a(26) from Martin Ehrenstein, Apr 26 2021
Showing 1-10 of 25 results. Next