A085601
a(n) = 2 * (4^n + 2^n) + 1.
Original entry on oeis.org
5, 13, 41, 145, 545, 2113, 8321, 33025, 131585, 525313, 2099201, 8392705, 33562625, 134234113, 536903681, 2147549185, 8590065665, 34360000513, 137439477761, 549756862465, 2199025352705, 8796097216513, 35184380477441
Offset: 0
Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Jul 07 2003
Cf.
A343175 (essentially the same).
-
Table[2(4^n+2^n)+1,{n,0,30}] (* or *) LinearRecurrence[{7,-14,8},{5,13,41},30] (* Harvey P. Dale, Dec 30 2017 *)
-
first(n) = Vec((5 - 22*x + 20*x^2)/(1 - 7*x + 14*x^2 - 8*x^3) + O(x^n)) \\ Iain Fox, Dec 30 2017
A257418
Number of pieces after a sheet of paper is folded n times and cut diagonally.
Original entry on oeis.org
2, 3, 5, 8, 13, 23, 41, 77, 145, 281, 545, 1073, 2113, 4193, 8321, 16577, 33025, 65921, 131585, 262913, 525313, 1050113, 2099201, 4197377, 8392705, 16783361, 33562625, 67121153, 134234113, 268460033, 536903681, 1073790977, 2147549185, 4295065601, 8590065665
Offset: 0
n=1: Take a rectangular sheet of paper and fold it in half. Cutting along the diagonal of the resulting rectangle yields 3 smaller pieces of paper.
n=0: Cutting the sheet of paper (without any folding) along the diagonal yields two pieces.
-
[2,3,5,8] cat [Floor((2^n+2^(n/2)*(1+(-1)^n+3*Sqrt(2)*(1-(-1)^n)/4)+2)/2):n in [4..40]]; // Vincenzo Librandi, May 05 2015
-
2, seq(floor((2^n+2^(n/2)*(1+(-1)^n+3*sqrt(2)*(1-(-1)^n)/4)+2)/2),n=1..25);
-
Table[Floor[(2^n + 2^(n/2)*(1 + (-1)^n + 3 Sqrt[2]*(1 - (-1)^n)/4) + 2)/2], {n, 0, 25}] (* Michael De Vlieger, Apr 24 2015 *)
-
concat(2,vector(30,n,round((2^n+2^(n/2)*(1+(-1)^n+3*sqrt(2)*(1-(-1)^n)/4)+2)/2))) \\ Derek Orr, Apr 27 2015
-
Vec((2 - 3*x - 4*x^2 + 5*x^3 - x^4 + 2*x^5) / ((1 - x)*(1 - 2*x)*(1 - 2*x^2)) + O(x^35)) \\ Colin Barker, Feb 05 2020
A343176
a(0)=3; for n > 0, a(n) = 2^(2*n) + 3*2^(n-1) + 1.
Original entry on oeis.org
3, 8, 23, 77, 281, 1073, 4193, 16577, 65921, 262913, 1050113, 4197377, 16783361, 67121153, 268460033, 1073790977, 4295065601, 17180065793, 68719869953, 274878693377, 1099513200641, 4398049656833, 17592192335873, 70368756760577, 281475001876481, 1125899957174273, 4503599728033793
Offset: 0
Showing 1-3 of 3 results.
Comments