A064618 Stirling transform of (n!)^2.
1, 1, 5, 49, 821, 21121, 775205, 38516689, 2490976661, 203419086241, 20474978755205, 2490729330118129, 360263844701062901, 61114158974786823361, 12017074366801186956005, 2711409826920884006692369, 695820350706240448128979541, 201526362605605903609254528481
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..253
Programs
-
Maple
a:= n-> add(Stirling2(n, k)*(k!^2), k=0..n): seq(a(n), n=0..20); # Alois P. Heinz, Apr 21 2012
-
Mathematica
Table[Sum[(k!)^2*StirlingS2[n, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 10 2014 *)
-
PARI
/* By Vladeta Jovovic's formula: */ {a(n) = my(X=x+x*O(x^n)); n!*polcoeff( sum(m=0,n, m!*(exp(X)-1)^m), n)} /* Paul D. Hanna, Feb 15 2012 */
Formula
a(n) = Sum_{k=0..n} Stirling2(n, k)*(k!)^2.
E.g.f: hypergeom([1, 1], [], exp(x)-1). - Vladeta Jovovic, Sep 14 2003
O.g.f.: Sum_{n>=0} n!^2 * Product_{k=1..n} x/(1 - k*x). - Paul D. Hanna, Nov 25 2012
a(n) ~ exp(1/2) * (n!)^2. - Vaclav Kotesovec, May 10 2014
Comments