A076335
Brier numbers: numbers that are both Riesel and Sierpiński [Sierpinski], or odd n such that for all k >= 1 the numbers n*2^k + 1 and n*2^k - 1 are composite.
Original entry on oeis.org
3316923598096294713661, 10439679896374780276373, 11615103277955704975673, 12607110588854501953787, 17855036657007596110949, 21444598169181578466233, 28960674973436106391349, 32099522445515872473461, 32904995562220857573541
Offset: 1
- D. Baczkowski, J. Eitner, C. E. Finch, B. Suminski, and M. Kozek, Polygonal, Sierpinski, and Riesel numbers, Journal of Integer Sequences, 2015 Vol 18. #15.8.1.
- Chris Caldwell, The Prime Glossary, Riesel number
- Chris Caldwell, The Prime Glossary, Sierpinski number
- Christophe Clavier, 14 new Brier numbers
- Fred Cohen and J. L. Selfridge, Not every number is the sum or difference of two prime powers, Math. Comput. 29 (1975), pp. 79-81.
- P. Erdős, On integers of the form 2^k + p and some related problems, Summa Brasil. Math. 2 (1950), pp. 113-123.
- M. Filaseta et al., On Powers Associated with Sierpiński Numbers, Riesel Numbers and Polignac’s Conjecture, Journal of Number Theory, Volume 128, Issue 7, July 2008, Pages 1916-1940. (See pages 9-10)
- Michael Filaseta and Jacob Juillerat, Consecutive primes which are widely digitally delicate, arXiv:2101.08898 [math.NT], 2021.
- Michael Filaseta, Jacob Juillerat, and Thomas Luckner, Consecutive primes which are widely digitally delicate and Brier numbers, arXiv:2209.10646 [math.NT], 2022. See also Integers (2023) Vol. 23, #A75.
- Yves Gallot, A search for some small Brier numbers, 2000.
- G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 6992565235279559197457863
- Dan Ismailescu and Peter Seho Park, On Pairwise Intersections of the Fibonacci, Sierpiński, and Riesel Sequences, Journal of Integer Sequences, 16 (2013), #13.9.8.
- Joe McLean, Brier Numbers [Cached copy]
- Carlos Rivera, Problem 29. Brier numbers, The Prime Puzzles and Problems Connection.
- Carlos Rivera, Problem 58. Brier numbers revisited, The Prime Puzzles and Problems Connection.
- Carlos Rivera, Problem 68. More on Brier numbers, The Prime Puzzles and Problems Connection.
- Carlos Rivera, See here for latest information about progress on this sequence
- Eric Weisstein's World of Mathematics, Brier Number
Cf.
A194591,
A194600,
A194603,
A194606,
A194607,
A194608,
A194635,
A194636,
A194637,
A194638,
A194639,
A076336,
A076337,
A040081,
A040076,
A103963,
A103964,
A038699,
A050921,
A064699,
A052333,
A003261,
A364412,
A364413.
A234594 is the old, incorrect version.
Many terms reported in Problem 29 from "The Prime Problems & Puzzles Connection" from
Carlos Rivera, May 30 2010
A180247
Prime Brier numbers: primes p such that for all k >= 1 the numbers p*2^k + 1 and p*2^k - 1 are composite.
Original entry on oeis.org
10439679896374780276373, 21444598169181578466233, 105404490005793363299729, 178328409866851219182953, 239365215362656954573813, 378418904967987321998467, 422280395899865397194393, 474362792344501650476113, 490393518369132405769309
Offset: 1
- D. Baczkowski, J. Eitner, C. E. Finch, B. Suminski, and M. Kozek, Polygonal, Sierpinski, and Riesel numbers, Journal of Integer Sequences, 2015 Vol 18. #15.8.1.
- Chris Caldwell, The Prime Glossary, Riesel number
- Chris Caldwell, The Prime Glossary, Sierpinski number
- Christophe Clavier, 14 new Brier numbers
- Fred Cohen and J. L. Selfridge, Not every number is the sum or difference of two prime powers, Math. Comput. 29 (1975), pp. 79-81.
- P. Erdős, On integers of the form 2^k + p and some related problems, Summa Brasil. Math. 2 (1950), pp. 113-123.
- Yves Gallot, A search for some small Brier numbers, 2000.
- G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 6992565235279559197457863
- Dan Ismailescu and Peter Seho Park, On Pairwise Intersections of the Fibonacci, Sierpiński, and Riesel Sequences, Journal of Integer Sequences, 16 (2013), #13.9.8.
- Joe McLean, Brier Numbers [Cached copy]
- Carlos Rivera, Problem 52. ±p ± 2^n, The Prime Puzzles and Problems Connection.
- Eric Weisstein's World of Mathematics, Brier Number
Cf.
A194591,
A194600,
A194603,
A194606,
A194607,
A194608,
A194635,
A194636,
A194637,
A194638,
A194639,
A076336,
A076337,
A040081,
A040076,
A103963,
A103964,
A038699,
A050921,
A064699,
A052333,
A003261.
A194635
Indices of records in A194591 restricted to prime indices.
Original entry on oeis.org
2, 5, 13, 47, 59, 109, 241, 631, 1109, 1373, 1447, 16229, 52267, 56543, 838441, 16935761, 270704167, 3296757029
Offset: 1
- Wilfrid Keller, personal communication, 2010.
-
l = -1; Flatten[Table[p = Prime[n]; k = 0; While[! PrimeQ[p*2^k - 1] && ! PrimeQ[p*2^k + 1], k++]; If[k > l, l = k; p, {}], {n, 10^4}]] (* Arkadiusz Wesolowski, Sep 04 2011 *)
a(17) was found in 2000 by Wilfrid Keller
a(18) was found in 2003 by Patrick De Geest
A194639
Indices of records in A194591 when it is restricted to odd indices.
Original entry on oeis.org
1, 5, 13, 47, 59, 109, 241, 335, 1109, 1373, 1447, 14893, 52267, 56543, 649603, 838441, 8840101, 16935761, 100604513, 118373279, 270704167, 1355477231
Offset: 1
- Wilfrid Keller, personal communication, 2010.
-
l = -1; Flatten[Table[n = 2*n - 1; k = 0; While[! PrimeQ[n*2^k - 1] && ! PrimeQ[n*2^k + 1], k++]; If[k > l, l = k; n, {}], {n, 10^5}]] (* Arkadiusz Wesolowski, Sep 04 2011 *)
a(22) was found in 2002 by Wilfrid Keller.
Original entry on oeis.org
0, 1, 2, 3, 6, 8, 583, 6393, 9715, 33288, 3321063, 5054502, 31172165
Offset: 1
A040076(1)=0, so a(1)=0;
A040076(3)=1, so a(2)=1;
-
k = -1; n = 0; km = k; While[k < 8192, n++; k = 0; cp = n*(2^ k) + 1; While[(! PrimeQ[cp]) && (k < 8192), k++; cp = n*(2^k) + 1]; If[k > km, km = k; Print[{n, km}]]]
A350118
Primes p for which the smallest m such that p*2^m + 1 is prime increases. Sequence terminates with the smallest prime Sierpiński number.
Original entry on oeis.org
2, 3, 7, 17, 19, 31, 47, 383, 2897, 3061, 5297, 7013, 10223
Offset: 1
Let b(p) be the smallest m such that p*2^m + 1 is prime. We have a(1) = 2 with b(2) = 0.
The least prime p such that b(p) > 0 is p = 3 with b(3) = 1, so a(2) = 3.
The least prime p such that b(p) > 1 is p = 7 with b(7) = 2, so a(3) = 7.
The least prime p such that b(p) > 2 is p = 17 with b(17) = 3, so a(4) = 17.
The least prime p such that b(p) > 3 is p = 19 with b(19) = 6, so a(5) = 19.
The least prime p such that b(p) > 6 is p = 31 with b(31) = 8, so a(6) = 31.
The least prime p such that b(p) > 8 is p = 47 with b(47) = 583, so a(7) = 47.
-
b(p) = for(k=0, oo, if(isprime(p*2^k+1), return(k)))
list(lim) = if(lim>=2, my(v=[2],r=0); forprime(p=2, lim, if(b(p)>r, r=b(p); v=concat(v,p))); v)
A258074
Table read by rows: each row represents the constant and exponent of a Colbert number.
Original entry on oeis.org
5359, 5054502, 33661, 7031232, 28433, 7830457, 27653, 9167433, 19249, 13018586, 10223, 31172165
Offset: 1
The table is as follows:
5359, 5054502;
33661, 7031232;
28433, 7830457;
27653, 9167433;
19249, 13018586
10223, 31172165
- C. K. Caldwell, The Prime Glossary, Colbert Number
- C. K. Caldwell, The Prime Database, 10223*2^31172165+1
- W. Sierpiński, Sur un problème concernant les nombres k * 2^n + 1, Elem. Math., 15 (1960), pp. 73-74.
- Hermann Stamm-Wilbrandt, Colbert numbers, contains entries [k,n,s,x,y] for the 6 Colbert numbers, with p=k*2^n+1, s^2%p==p-1 and p==x^2+y^2.
- Wikipedia, Seventeen or Bust
a(11)-a(12) from
Richard N. Smith, Jul 15 2019, following by the prime 10223*2^31172165+1 found by PrimeGrid.
Showing 1-7 of 7 results.
Comments