cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064999 Partial sums of sequence (essentially A002378): 1, 2, 6, 12, 20, 30, 42, 56, 72, 90, ...

Original entry on oeis.org

1, 3, 9, 21, 41, 71, 113, 169, 241, 331, 441, 573, 729, 911, 1121, 1361, 1633, 1939, 2281, 2661, 3081, 3543, 4049, 4601, 5201, 5851, 6553, 7309, 8121, 8991, 9921, 10913, 11969, 13091, 14281, 15541, 16873, 18279, 19761, 21321, 22961, 24683
Offset: 0

Views

Author

Klaus E. Kastberg (kastberg(AT)hotkey.net.au), Oct 31 2001

Keywords

Comments

Equals triangle A144328 * [1, 2, 3, ...]. - Gary W. Adamson, Sep 18 2008
a(n) is the number of parking functions of size n+1 avoiding the patterns 123 and 312. - Lara Pudwell, Apr 10 2023

Crossrefs

Cf. A144328. - Gary W. Adamson, Sep 18 2008

Programs

  • Magma
    [(n^3+3*n^2+2*n+3)/3: n in [0..50]]; // Vincenzo Librandi, Feb 28 2016
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+n^2-n od: seq(a[n], n=0..42); # Zerinvary Lajos, Jun 05 2008
  • Mathematica
    Table[(x^3 - x + 3)/3, {x, 1, 100}] (* Artur Jasinski, Feb 14 2007 *)
    LinearRecurrence[{4, -6, 4, -1}, {1, 3, 9, 21}, 50] (* Vincenzo Librandi, Feb 28 2016 *)
  • PARI
    { for (n=0, 1000, if (n, a+=n*(n + 1), a=1); write("b064999.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 03 2009
    
  • PARI
    a(n) = (n^3+3*n^2+2*n+3)/3; \\ Altug Alkan, May 16 2018
    

Formula

a(n) = A007290(n+2) + 1 = (n^3 + 3*n^2 + 2*n + 3)/3.
a(0) = 1, a(n) = n*(n+1) + a(n-1) for n > 1. - Gerald McGarvey, Sep 26 2004
O.g.f.: (1 - x + 3x^2 - x^3)/(1 - x)^4.

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Nov 12 2001