A144328
A002260 preceded by a column of 1's: a (1, 1, 2, 3, 4, 5, ...) crescendo triangle by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 4, 1, 1, 2, 3, 4, 5, 1, 1, 2, 3, 4, 5, 6, 1, 1, 2, 3, 4, 5, 6, 7, 1, 1, 2, 3, 4, 5, 6, 7, 8, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
Offset: 1
First few rows of the triangle:
1;
1, 1;
1, 1, 2;
1, 1, 2, 3;
1, 1, 2, 3, 4;
1, 1, 2, 3, 4, 5;
...
-
a144328 n k = a144328_tabl !! (n-1) !! (k-1)
a144328_row n = a144328_tabl !! (n-1)
a144328_tabl = [1] : map (\xs@(x:_) -> x : xs) a002260_tabl
-- Reinhard Zumkeller, Apr 29 2015
-
Flatten[Table[Join[{1},Range[n]],{n,0,11}]] (* Harvey P. Dale, Aug 10 2013 *)
-
from math import comb, isqrt
def A144328(n): return n-comb((m:=isqrt(k:=n<<1))+(k>m*(m+1)),2)-(comb(isqrt(n-1<<1)+1,2)!=n-1) # Chai Wah Wu, Nov 08 2024
A300454
Irregular triangle read by rows: row n consists of the coefficients of the expansion of the polynomial 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2.
Original entry on oeis.org
0, 1, 2, 1, 0, 3, 4, 1, 0, 5, 8, 3, 0, 7, 14, 9, 2, 0, 9, 22, 21, 10, 2, 0, 11, 32, 41, 30, 12, 2, 0, 13, 44, 71, 70, 42, 14, 2, 0, 15, 58, 113, 140, 112, 56, 16, 2, 0, 17, 74, 169, 252, 252, 168, 72, 18, 2, 0, 19, 92, 241, 420, 504, 420, 240, 90, 20, 2, 0
Offset: 0
The triangle T(n,k) begins
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0: 0 1 2 1
1: 0 3 4 1
2: 0 5 8 3
3: 0 7 14 9 2
4: 0 9 22 21 10 2
5: 0 11 32 41 30 12 2
6: 0 13 44 71 70 42 14 2
7: 0 15 58 113 140 112 56 16 2
8: 0 17 74 169 252 252 168 72 18 2
9: 0 19 92 241 420 504 420 240 90 20 2
10: 0 21 112 331 660 924 924 660 330 110 22 2
11: 0 23 134 441 990 1584 1848 1584 990 440 132 24 2
12: 0 25 158 573 1430 2574 3432 3432 2574 1430 572 156 26 2
13: 0 27 184 729 2002 4004 6006 6864 6006 4004 2002 728 182 28 2
- Inga Johnson and Allison K. Henrich, An Interactive Introduction to Knot Theory, Dover Publications, Inc., 2017.
- Agnijo Banerjee, Knot theory.
- Răzvan Gelca and Fumikazu Nagasato,Some results about the kauffman bracket skein module of the twist knot exterior, J. Knot Theory Ramifications 15 (2006), 1095-1106.
- L. H. Kauffman, State models and the Jones polynomial, Topology, Vol. 26 (1987), 395-407.
- Kelsey Lafferty, The three-variable bracket polynomial for reduced, alternating links, Rose-Hulman Undergraduate Mathematics Journal, Vol. 14: Iss. 2, Article 7 (2013).
- Franck Ramaharo, Enumerating the states of the twist knot, arXiv preprint arXiv:1712.06543 [math.CO], 2017.
- Franck Ramaharo, A one-variable bracket polynomial for some Turk's head knots, arXiv:1807.05256 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.
- Alexander Stoimenow, Generating functions, Fibonacci numbers and rational knots, Journal of Algebra, Volume 310, Issue 2 (2007), 491-525.
- Eric Weisstein's World of Mathematics, Bracket Polynomial.
- Wikipedia, Twist knot.
Row sums:
A020707(Pisot sequences).
Triangles related to the regular projection of some knots:
A299989 (connected summed trefoils);
A300184 (chain links);
A300453 ((2,n)-torus knot).
Cf.
A002061,
A005408,
A007318,
A014206,
A028326,
A028326,
A046127,
A046127,
A046127,
A064999,
A155753,
A299989,
A300454,
A300454.
-
P(n, x) := 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2$
T : []$
for i:0 thru 20 do
T : append(T, makelist(ratcoef(P(i, x), x, n), n, 0, max(3, i + 1)))$
T;
-
row(n) = Vecrev(2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2);
tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Mar 12 2018
A210864
Triangle of coefficients of polynomials u(n,x) jointly generated with A210865; see the Formula section.
Original entry on oeis.org
1, 2, 1, 3, 3, 2, 4, 9, 9, 3, 5, 21, 30, 21, 5, 6, 41, 91, 96, 47, 8, 7, 71, 242, 358, 278, 101, 13, 8, 113, 565, 1187, 1303, 757, 209, 21, 9, 169, 1182, 3517, 5238, 4364, 1951, 422, 34, 10, 241, 2263, 9332, 18816, 21213, 13674, 4802, 833, 55, 11, 331
Offset: 1
First five rows:
1
2...1
3...3....2
4...9....9....3
5...21...30...21...5
First three polynomials u(n,x): 1, 2 + x, 3 + 3x + 2x^2.
-
u[1, x_] := 1; v[1, x_] := 1; z = 14;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1;
v[n_, x_] := (x + n)*u[n - 1, x] + x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210864 *)
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210865 *)
A014112
a(n) = n*(n-1) + (n-2)*(n-3) + ... + 1*0 + 1 for n odd; otherwise, a(n) = n*(n-1) + (n-2)*(n-3) + ... + 2*1.
Original entry on oeis.org
1, 2, 7, 14, 27, 44, 69, 100, 141, 190, 251, 322, 407, 504, 617, 744, 889, 1050, 1231, 1430, 1651, 1892, 2157, 2444, 2757, 3094, 3459, 3850, 4271, 4720, 5201, 5712, 6257, 6834, 7447, 8094, 8779, 9500, 10261, 11060, 11901, 12782, 13707, 14674, 15687
Offset: 1
From _Bruno Berselli_, Mar 12 2018: (Start)
n=1: 1;
n=2: 1*2;
n=3: 1 + 0*1 + 2*3 = 7;
n=4: 1*2 + 3*4 = 14;
n=5: 1 + 0*1 + 2*3 + 4*5 = 27;
n=6: 1*2 + 3*4 + 5*6 = 44;
n=7: 1 + 0*1 + 2*3 + 4*5 + 6*7 = 69, etc.
(End)
-
[n le 2 select n else Self(n-2)+n*(n-1):n in [1..50]]; // Vincenzo Librandi, Feb 28 2016
(C#) public BigInteger a(BigInteger n) => (n * (n + 2) * (2 * n - 1) + 9) / 12; // Delbert L. Johnson, Mar 19 2023
-
LinearRecurrence[{3, -2, -2, 3, -1}, {1, 2, 7, 14, 27}, 50] (* Vincenzo Librandi, Feb 28 2016 *)
Original entry on oeis.org
1, -1, 4, -1, 1, 9, -1, 1, 5, 16, -1, 1, 5, 11, 25, -1, 1, 5, 11, 19, 36, -1, 1, 5, 11, 19, 29, 49, -1, 1, 5, 11, 19, 29, 41, 64, -1, 1, 5, 11, 19, 29, 41, 55, 81, -1, 1, 5, 11, 19, 29, 41, 55, 71, 100
Offset: 1
First few rows of the triangle:
1;
-1, 4;
-1, 1, 9;
-1, 1, 5, 16;
-1, 1, 5, 11, 25;
-1, 1, 5, 11, 19, 36;
-1, 1, 5, 11, 19, 29, 49;
...
Original entry on oeis.org
1, 2, 1, 4, 3, 2, 7, 6, 5, 3, 11, 10, 9, 7, 4, 16, 15, 14, 12, 9, 5, 22, 21, 20, 18, 15, 11, 6, 29, 28, 27, 25, 22, 18, 13, 7, 37, 36, 35, 33, 30, 26, 21, 15, 8, 46, 45, 44, 42, 39, 35, 30, 24, 17, 9, 56, 55, 54, 52, 49, 45, 40, 34, 27, 19, 10
Offset: 1
First few rows of the triangle =
1;
2, 1
4, 3, 2
7, 6, 5, 3;
11, 10, 9, 7, 4;
16, 15, 14, 12, 9, 5;
22, 21, 20, 18, 15, 11, 6;
29, 28, 27, 25, 22, 18, 13, 7;
...
Row 4 = (7, 6, 5, 3) = partial sums from the right of triangle A144328, row 4: (1, 1, 2, 3).
A363685
Irregular triangle read by rows: T(n,k) is the number of descending plane partitions of order n with the sum of the parts equal to k.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 2, 2, 3, 2, 4, 3, 4, 3, 4, 2, 3, 2, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2, 3, 4, 4, 7, 7, 10, 11, 14, 14, 18, 18, 21, 21, 23, 22, 25, 22, 23, 21, 21, 18, 18, 14, 14, 11, 10, 7, 7, 4, 4, 3, 2, 1, 1, 0, 1
Offset: 1
Rows 1 through 5 are
1;
1, 0, 1;
1, 0, 1, 1, 1, 1, 1, 0, 1;
1, 0, 1, 1, 2, 2, 3, 2, 4, 3, 4, 3, 4, 2, 3, 2, 2, 1, 1, 0, 1;
1, 0, 1, 1, 2, 3, 4, 4, 7, 7, 10, 11, 14, 14, 18, 18, 21, 21, 23, 22, 25, 22, 23, 21, 21, 18, 18, 14, 14, 11, 10, 7, 7, 4, 4, 3, 2, 1, 1, 0, 1.
Showing 1-7 of 7 results.
Comments