cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A154021 a(n+2) = 16*a(n+1) - a(n), with a(1)=0, a(2)=4.

Original entry on oeis.org

0, 4, 64, 1020, 16256, 259076, 4128960, 65804284, 1048739584, 16714029060, 266375725376, 4245297576956, 67658385505920, 1078288870517764, 17184963542778304, 273881127813935100, 4364913081480183296
Offset: 1

Views

Author

Vincenzo Librandi, Jan 04 2009

Keywords

Comments

If a(n)=x and a(n+1)=y, then 16=(x^2+y^2)/(xy+1).
In general, the sequence a(1)=0, a(2)=U; a(n+2)=U^2*a(n+1)-a(n) has the property that "If a(n)=x and a(n+1)=y then (x^2+y^2)/(xy+1)=U^2".

Crossrefs

Programs

  • Magma
    I:=[0,4]; [n le 2 select I[n] else 16*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 25 2012
  • Mathematica
    Nest[Append[#,16Last[#]-#[[-2]]]&,{0,4},20]  (* or *) Rest[CoefficientList[Series[4x^2/(1-16x+x^2), {x,0,22}], x]]  (* Harvey P. Dale, Apr 17 2011 *)
    LinearRecurrence[{16, -1}, {0, 4}, 20] (* T. D. Noe, Apr 17 2011 *)

Formula

From R. J. Mathar, Jan 05 2011: (Start)
G.f.: 4*x^2/(1 -16*x +x^2).
a(n) = 4*A077412(n-2). (End)

Extensions

375725376 replaced by 266375725376 - R. J. Mathar, Jan 07 2009
Edited by N. J. A. Sloane, Jun 23 2010 at the suggestion of Joerg Arndt.

A154027 a(n+2) = 100*a(n+1) - a(n), a(1)=0, a(2)=10.

Original entry on oeis.org

0, 10, 1000, 99990, 9998000, 999700010, 99960003000, 9995000599990, 999400099996000, 99930014999000010, 9992002099800005000, 999100279965001499990, 99900035994400349994000, 9989004499160069997900010
Offset: 1

Views

Author

Vincenzo Librandi, Jan 04 2009

Keywords

Comments

If a(n)=x and a(n+1)=y then (x^2+y^2)/(xy+1)=100.

Crossrefs

Programs

  • Magma
    I:=[0, 10]; [n le 2 select I[n] else 100*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 26 2012
    
  • Mathematica
    LinearRecurrence[{100,-1},{0,10},20] (* Vincenzo Librandi, Feb 26 2012 *)
    CoefficientList[Series[(10*x)/(1-100*x+x^2),{x,0,20}],x] (* Harvey P. Dale, Aug 15 2012 *)
  • PARI
    a(n)=([0,1;-1,100]^n*[0;10])[1,1] \\ Charles R Greathouse IV, Sep 01 2016

Formula

G.f.: (10*x)/(1 -100*x +x^2). - Harvey P. Dale, Aug 15 2012

A115169 Integers b > 0 for which there exists a positive integer a <= b such that (a^2 + b^2)/(1 + ab) is an integer.

Original entry on oeis.org

1, 8, 27, 30, 64, 112, 125, 216, 240, 343, 418, 512, 729, 1000, 1020, 1331, 1560, 1728, 2133, 2197, 2744, 3120, 3375, 4096, 4913, 5822, 5832, 6859, 7770, 8000, 9261, 10648, 12167, 13824, 15625, 16256, 16800, 17576, 18957, 19683
Offset: 1

Views

Author

John W. Layman, Mar 03 2006

Keywords

Comments

All positive cubes are in this sequence.
Indeed, if b = k^3, then for a = k, we have a^2 + b^2 = k^2 + k^6 = (1 + k^4)*k^2 = (a*b + 1)*a^2. More generally, if the ratio (a^2 + b^2)/(a*b + 1) is an integer, it is equal to gcd(a,b)^2, thus in particular a perfect square. (This was Question 6 in the 1988 IMO.) All solutions (a,b) are member of a sequence {(x(n), x(n+1)); n = 1,2,...} where x = (0, k, k^3, k^5 - k, ...) with x(n+1) = k^2*x(n) - x(n-1) and some k >= 2, cf. A052530 for k = 2, A065100 for k = 3. (One might consider >= 0 instead > 0 in the definition, but a = 0 yields a solution for any b.) - M. F. Hasler, Jun 12 2019

Examples

			(2^2+8^2)/(1+2*8) = 68/17 = 4, an integer, so 8 is a term of the series.
From _M. F. Hasler_, Jun 12 2019: (Start)
The list of solutions starts:
     a      b     a^2+b^2   a*b+1   ratio
   ----------------------------------------
     1      1          2       2       1
     8      2         68      17       4
    27      3        738      82       9
    30      8        964     241       4
    64      4       4112     257      16
   112     30      13444    3361       4
   125      5      15650     626      25
   216      6      46692    1297      36
   240     27      58329    6481       9
   343      7     117698    2402      49
   418    112     187268   46817       4
   512      8     262208    4097      64
   729      9     531522    6562      81
  1000     10    1000100   10001     100
  1020     64    1044496   65281      16
(End)
		

Crossrefs

Cf. A000578 (cubes), A052530 (subsequence of terms for ratio 2^2, for n >= 2), A065100 (subsequence of terms for ratio 3^2).

Programs

  • PARI
    isok(n) = for(m=0, n, if (denominator((m^2+n^2)/(1+m*n))==1, return(1))); return (0); \\ Michel Marcus, Sep 18 2017
    
  • PARI
    is_A115169(n)=for(a=1,n\3+1,(a^2+n^2)%(1+a*n)||return(1)) \\ M. F. Hasler, Jun 12 2019
    
  • PARI
    is(n)=my(s=sqrtnint(n,3),n2=n^2); for(b=1,s, if((n2+b^2)%(n*b+1)==0, return(1))); for(K=2,sqrtint((n2+(s+1)^2)\(n*s+n+1)), my(k=K^2); if(issquare(k^2*n2-4*n2+4*k), return(1))); 0 \\ Charles R Greathouse IV, Nov 08 2021

Extensions

Edited by M. F. Hasler, Jun 12 2019

A154022 a(n) = 5*A097780(n-2).

Original entry on oeis.org

0, 5, 125, 3120, 77875, 1943755, 48516000, 1210956245, 30225390125, 754423796880, 18830369531875, 470004814499995, 11731289992968000, 292812245009700005, 7308574835249532125, 182421558636228603120
Offset: 1

Views

Author

Vincenzo Librandi, Jan 04 2009

Keywords

Comments

If a(n)=x and a(n+1)=y, then (x^2+y^2)/(xy+1)=25.

Crossrefs

Programs

  • Magma
    I:=[0, 5]; [n le 2 select I[n] else 25*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Jan 29 2012
  • Mathematica
    CoefficientList[Series[(5*z)/(z^2-25*z+1),{z,0,25}],z] (* Vincenzo Librandi, Jan 29 2012 *)
    LinearRecurrence[{25,-1},{0,5},20] (* Harvey P. Dale, Mar 06 2018 *)
  • PARI
    concat(0,Vec(5/(1-25*x+x^2)+O(x^98))) \\ Charles R Greathouse IV, Dec 27 2011
    

Formula

a(n) = +25*a(n-1) -a(n-2).
G.f.: 5*x^2/(1 -25*x +x^2). - R. J. Mathar, Jan 05 2011

Extensions

Edited by N. J. A. Sloane, Jun 23 2010 at the suggestion of Joerg Arndt.

A154026 a(n+2) = 81*a(n+1) - a(n), a(1)=0, a(2)=9.

Original entry on oeis.org

0, 9, 729, 59040, 4781511, 387243351, 31361929920, 2539929080169, 205702893563769, 16659394449585120, 1349205247522830951, 109268965654899721911, 8849437012799354643840, 716695129071092826429129, 58043456017745719586115609, 4700803242308332193648935200
Offset: 1

Views

Author

Vincenzo Librandi, Jan 04 2009

Keywords

Comments

If a(n)=x and a(n+1)=y then (x^2+y^2)/(xy+1)=81.

Crossrefs

Programs

  • Magma
    I:=[0,9]; [n le 2 select I[n] else 81*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 25 2012
  • Mathematica
    LinearRecurrence[{81,-1},{0,9},20] (* Harvey P. Dale, Sep 15 2011 *)
  • PARI
    concat(0,Vec(9/(x^2-81*x+1)+O(x^98))) \\ Charles R Greathouse IV, Dec 27 2011
    

Formula

G.f.: (9*x)/(1 -81*x +x^2). - Harvey P. Dale, Sep 15 2011

Extensions

More terms from Harvey P. Dale, Sep 15 2011

A154023 a(n+2) = 36*a(n+1) - a(n), a(1)=0, a(2)=6.

Original entry on oeis.org

0, 6, 216, 7770, 279504, 10054374, 361677960, 13010352186, 468011000736, 16835385674310, 605605873274424, 21784976052204954, 783653532006103920, 28189742176167536166, 1014047064810025198056, 36477504590984739593850
Offset: 1

Views

Author

Vincenzo Librandi, Jan 04 2009

Keywords

Comments

If a(n)=x and a(n+1)=y then (x^2+y^2)/(xy+1)=36.

Crossrefs

Programs

Formula

From R. J. Mathar, Oct 18 2010: (Start)
a(n)= +36*a(n-1) -a(n-2)
a(n) = 6*A144128(n-1).
G.f.: 6*x/(1 -36*x +x^2). (End)

Extensions

Edited by N. J. A. Sloane, Jun 23 2010 at the suggestion of Joerg Arndt.
Missing digit inserted in a(8) by R. J. Mathar, Oct 18 2010

A154024 a(n+2) = 49*a(n+1) - a(n), a(1)=0, a(2)=7.

Original entry on oeis.org

0, 7, 343, 16800, 822857, 40303193, 1974033600, 96687343207, 4735705783543, 231952896050400, 11360956200686057, 556454900937566393, 27254929189740067200, 1334935075396325726407
Offset: 1

Views

Author

Vincenzo Librandi, Jan 04 2009

Keywords

Comments

If a(n)=x and a(n+1)=y, then (x^2+y^2)/(xy+1)=49.

Crossrefs

Programs

  • Magma
    I:=[0, 7]; [n le 2 select I[n] else 49*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 25 2012
  • Mathematica
    LinearRecurrence[{49,-1},{0,7},30] (* Vincenzo Librandi, Feb 25 2012 *)
    Rest@ CoefficientList[Series[7 x^2/(1 - 49 x + x^2), {x, 0, 14}], x] (* Michael De Vlieger, Sep 01 2016 *)
  • PARI
    concat(0,Vec(7/(1-49*x+x^2)+O(x^98))) \\ Charles R Greathouse IV, Dec 27 2011
    

Formula

G.f.: 7*x^2/(1 -49*x +x^2). - R. J. Mathar, Jan 05 2011

A154025 a(n+2) = 64*a(n+1) - a(n), a(1)=0, a(2)=8.

Original entry on oeis.org

0, 8, 512, 32760, 2096128, 134119432, 8581547520, 549084921848, 35132853450752, 2247953535926280, 143833893445831168, 9203121226997268472, 588855924634379351040, 37677576055373281198088, 2410776011619255617326592
Offset: 1

Views

Author

Vincenzo Librandi, Jan 04 2009

Keywords

Comments

If a(n)=x and a(n+1)=y then (x^2+y^2)/(xy+1)=64.

Crossrefs

Programs

  • Magma
    I:=[0, 8]; [n le 2 select I[n] else 64*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Jan 29 2012
    
  • Mathematica
    CoefficientList[Series[(8z)/(z^2-64z+1),{z,0,20}],z] (* Vincenzo Librandi, Jan 29 2012 *)
    LinearRecurrence[{64,-1},{0,8},20] (* Harvey P. Dale, Dec 19 2023 *)
  • PARI
    a(n)=([0,1; -1,64]^(n-1)*[0;8])[1,1] \\ Charles R Greathouse IV, Sep 01 2016

Formula

G.f.: 8*x^2/(1 -64*x +x^2). - R. J. Mathar, Jan 05 2011
Showing 1-8 of 8 results.