cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065330 a(n) = max { k | gcd(n, k) = k and gcd(k, 6) = 1 }.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 7, 1, 1, 5, 11, 1, 13, 7, 5, 1, 17, 1, 19, 5, 7, 11, 23, 1, 25, 13, 1, 7, 29, 5, 31, 1, 11, 17, 35, 1, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 1, 49, 25, 17, 13, 53, 1, 55, 7, 19, 29, 59, 5, 61, 31, 7, 1, 65, 11, 67, 17, 23, 35, 71, 1, 73, 37, 25, 19, 77, 13, 79, 5, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 29 2001

Keywords

Comments

Bennett, Filaseta, & Trifonov show that if n > 8 then a(n^2 + n) > n^0.285. - Charles R Greathouse IV, May 21 2014

Examples

			a(30) = 5.
		

Crossrefs

Programs

  • Haskell
    a065330 = a038502 . a000265  -- Reinhard Zumkeller, Jul 06 2011
    
  • Magma
    [n div Gcd(n, 6^n): n in [1..100]]; // Vincenzo Librandi, Feb 09 2016
  • Maple
    A065330 := proc(n)
        local a,f,p,e ;
        a := 1 ;
        for f in ifactors(n)[2] do
            p := op(1,f) ;
            e := op(2,f) ;
            if p > 3 then
                a := a*p^e ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Jul 12 2012
    with(padic): a := n -> n/(2^ordp(n, 2)*3^ordp(n, 3));
    seq(a(n), n=1..81); # Peter Luschny, Mar 25 2014
  • Mathematica
    f[n_] := Times @@ (First@#^Last@# & /@ Select[FactorInteger@n, First@# != 2 && First@# != 3 &]); Array[f, 81] (* Robert G. Wilson v, Aug 18 2006 *)
    f[n_]:=Denominator[6^n/n];Array[f,100] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2011 *)
    Table[n / GCD[n, 6^n], {n, 100}] (* Vincenzo Librandi, Feb 09 2016 *)
  • PARI
    a(n)=if(n<2,1,if(n%2,if(n%3,n,a(n/3)),a(n/2))) \\ Benoit Cloitre, Jun 04 2007
    
  • PARI
    a(n)=n\gcd(n,6^n) \\ Not very efficient, but simple. Stanislav Sykora, Feb 08 2016
    
  • PARI
    a(n)=n>>valuation(n,2)/3^valuation(n,3) \\ Charles R Greathouse IV, Mar 31 2016
    

Formula

a(n) * A065331(n) = n.
Multiplicative with a(2^e)=1, a(3^e)=1, a(p^e)=p^e, p>3. - Vladeta Jovovic, Nov 02 2001
A106799(n) = A001222(a(n)). - Reinhard Zumkeller, May 19 2005
a(1)=1; then a(2n)=a(n), a(2n+1)=a((2n+1)/3) if 2n+1 is divisible by 3, a(2n+1)=2n+1 otherwise. - Benoit Cloitre, Jun 04 2007
Dirichlet g.f. zeta(s-1)*(1-2^(1-s))*(1-3^(1-s))/ ( (1-2^(-s))*(1-3^(-s)) ). - R. J. Mathar, Jul 04 2011
a(n) = A038502(A000265(n)). - Reinhard Zumkeller, Jul 06 2011
a(n) = n/GCD(n,6^n). - Stanislav Sykora, Feb 08 2016
Sum_{k=1..n} a(k) ~ (1/4) * n^2. - Amiram Eldar, Oct 22 2022