A065440 a(n) = (n-1)^n.
1, 0, 1, 8, 81, 1024, 15625, 279936, 5764801, 134217728, 3486784401, 100000000000, 3138428376721, 106993205379072, 3937376385699289, 155568095557812224, 6568408355712890625, 295147905179352825856, 14063084452067724991009, 708235345355337676357632
Offset: 0
Links
- Harry J. Smith, Table of n, a(n) for n = 0..100
- Mustafa Obaid et al., The number of complete exceptional sequences for a Dynkin algebra, arXiv preprint arXiv:1307.7573 [math.RT], 2013.
Crossrefs
Programs
-
Magma
A065440:= func< n | (n-1)^n >; [A065440(n): n in [0..30]]; // G. C. Greubel, Mar 23 2025
-
Mathematica
Table[(n-1)^n,{n,0,20}] (* Harvey P. Dale, Jan 03 2015 *)
-
PARI
a(n) = { (n - 1)^n } \\ Harry J. Smith, Oct 19 2009
-
SageMath
def A065440(n): return (n-1)**n print([A065440(n) for n in range(31)]) # G. C. Greubel, Mar 23 2025
Formula
a(n) = A007778(n-1).
E.g.f.: x/(T(x)*(1-T(x))) (where T(x) is Euler's tree function, the E.g.f. for n^(n-1)) (see A000169).
a(n) = Sum_{k=0..n} (-1)^k*binomial(n,k)*n^(n-k). - Robert FERREOL, Mar 28 2017
a(n) = Sum_{k=0..n} (-1)^k*binomial(n+2,k+2)*(k+1)*(2*k+n+3)^n. - Vladimir Kruchinin, Aug 13 2025
Comments