cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065509 Primes p such that p^4 + p^3 + p^2 + p + 1 is prime.

Original entry on oeis.org

2, 7, 13, 17, 23, 29, 43, 73, 79, 83, 127, 193, 227, 239, 263, 277, 337, 359, 373, 397, 439, 457, 479, 503, 557, 563, 617, 919, 967, 1009, 1129, 1187, 1249, 1297, 1327, 1429, 1493, 1553, 1579, 1657, 1663, 1979, 1987, 2069, 2243, 2383, 2617, 2663, 2789
Offset: 1

Views

Author

Vladeta Jovovic, Nov 26 2001

Keywords

Comments

Primes in A049409. - Vincenzo Librandi, Aug 07 2010
The generated prime numbers are in A190527. - Bernard Schott, Dec 20 2012

Examples

			a(4) = 17 because 17 is prime and 17^4 + 17^3 + 17^2 + 17 + 1 = 88741 is prime.
		

Crossrefs

Cf. A053182.

Programs

  • Magma
    [n: n in [0..10000]| IsPrime(n) and IsPrime(n^4+n^3+n^2+n+1)] // Vincenzo Librandi, Aug 07 2010
  • Mathematica
    f[n_]:=1+n+n^2+n^3+n^4; lst={}; Do[p=Prime[n]; If[PrimeQ[f[p]], AppendTo[lst,p]], {n,6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 24 2009 *)
    Select[Prime[Range[500]],PrimeQ[Total[#^Range[0,4]]]&] (* Harvey P. Dale, Apr 08 2017 *)
  • PARI
    { n=0; for (m=1, 10^9, p=prime(m); if (isprime(p^4 + p^3 + p^2 + p + 1), write("b065509.txt", n++, " ", p); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 20 2009
    
  • PARI
    {A065509_vec(N,p=1)=vector(N,i,until(isprime((p^5-1)\(p-1)),p=nextprime(p+1));p)} \\ M. F. Hasler, Mar 03 2020