cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A190527 Primes of the form p^4 + p^3 + p^2 + p + 1, where p is prime.

Original entry on oeis.org

31, 2801, 30941, 88741, 292561, 732541, 3500201, 28792661, 39449441, 48037081, 262209281, 1394714501, 2666986681, 3276517921, 4802611441, 5908670381, 12936304421, 16656709681, 19408913261, 24903325661, 37226181521, 43713558101, 52753304641, 64141071121, 96427561501, 100648118041
Offset: 1

Views

Author

Bernard Schott, Dec 20 2012

Keywords

Comments

These primes are generated by exactly A065509, cf. 2nd formula.
These numbers are repunit primes 11111_p, so they are Brazilian primes (A085104).
When p^4 + p^3 + p^2 + p + 1 = sigma(p^4) is prime, then it equals A193574(p^4), so that this sequence is a subsequence of A193574; by definition it is also a subsequence of A053699 and A131992. - Hartmut F. W. Hoft, May 05 2017

Examples

			a(3) = 30941 = 11111_13 = 13^4 + 13^3 + 13^2 + 13^1 + 1 is prime.
		

Crossrefs

Cf. A049409 (n^4 + ... + 1 is prime), A065509 (primes among these n), A193574.
Subsequence of A088548 (primes n^4 + ... + 1) and A085104 ("Brazilian" primes, of the form 1 + n + n^2 + ... + n^k).
Intersection of A000040 (primes) and A131992 (p^4 + ... + 1), subsequence of A053699 (n^4 + ... + 1).

Programs

  • Magma
    [p: p in PrimesUpTo(600) | IsPrime(p) where p is p^4 +p^3+p^2+p+1]; // Vincenzo Librandi, May 06 2017
    
  • Mathematica
    a190527[n_] := Select[Map[(Prime[#]^5-1)/(Prime[#]-1)&, Range[n]], PrimeQ]
    a190527[100] (* data *) (* Hartmut F. W. Hoft, May 05 2017 *)
    Select[#^4 + #^3 + #^2 + # + 1 &/@Prime[Range[100]], PrimeQ] (* Vincenzo Librandi, May 06 2017 *)
  • PARI
    [q|p<-primes(100),ispseudoprime(q=(p^5-1)\(p-1))]
    A190527_vec(N)=[(p^5-1)\(p-1)|p<-A065509_vec(N)] \\ M. F. Hasler, Mar 03 2020

Formula

a(n) = A193574(A065509(n)^4). - Hartmut F. W. Hoft, May 08 2017
a(n) = A053699(A065509(n)) = A000203(A065509(n)^4). - M. F. Hasler, Mar 03 2020

Extensions

a(7) corrected and a(18)-a(26) added by Hartmut F. W. Hoft, May 05 2017
Edited by M. F. Hasler, Mar 06 2020

A163268 Primes p such that 1 + p + p^2 + p^3 + p^4 + p^5 + p^6 is prime.

Original entry on oeis.org

2, 3, 5, 13, 17, 31, 61, 73, 89, 149, 163, 251, 349, 353, 461, 523, 599, 647, 863, 941, 947, 1087, 1117, 1229, 1277, 1291, 1297, 1409, 1439, 1489, 1567, 1579, 1609, 1627, 1753, 1783, 1831, 2039, 2131, 2293, 2531, 2609, 2753, 2861, 3037, 3163, 3167, 3299
Offset: 1

Views

Author

Keywords

Comments

Primes in A100330. The generated prime numbers are exactly A194257. [Bernard Schott, Dec 21 2012]

Crossrefs

Programs

  • Maple
    select(p -> isprime(p) and isprime(1+p+p^2+p^3+p^4+p^5+p^6), [2,seq(i,i=3..10000,2)]); # Robert Israel, May 05 2017
  • Mathematica
    f[n_]:=1+n+n^2+n^3+n^4+n^5+n^6; lst={}; Do[p=Prime[n]; If[PrimeQ[f[p]], AppendTo[lst,p]], {n,7!}]; lst
    Select[Prime[Range[500]],PrimeQ[Total[#^Range[0,6]]]&] (* Harvey P. Dale, Jul 13 2022 *)
  • PARI
    n=0;forprime(p=2,10000,isprime((p^7-1)/(p-1))&&print(n++" "p))\\ Zak Seidov, Mar 09 2013

Extensions

Edited (but not checked) by N. J. A. Sloane, Jul 25 2009

A259417 Even powers of the odd primes listed in increasing order.

Original entry on oeis.org

1, 9, 25, 49, 81, 121, 169, 289, 361, 529, 625, 729, 841, 961, 1369, 1681, 1849, 2209, 2401, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6561, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 14641, 15625, 16129, 17161, 18769, 19321, 22201, 22801, 24649
Offset: 1

Views

Author

Hartmut F. W. Hoft, Jun 26 2015

Keywords

Comments

Each of the following sequences, p^(q-1) with p >= 2 and q > 2 primes, except their respective first elements, powers of 2, is a subsequence:
A001248(p) = p^2, A030514(p) = p^4, A030516(p) = p^6,
A030629(p) = p^10, A030631(p) = p^12, A030635(p) = p^16,
A030637(p) = p^18, A137486(p) = p^22, A137492(p) = p^28,
A139571(p) = p^30, A139572(p) = p^36, A139573(p) = p^40,
A139574(p) = p^42, A139575(p) = p^46, A173533(p) = p^52,
A183062(p) = p^58, A183085(p) = p^60.
See also the link to the OEIS Wiki.
The sequences A053182(n)^2, A065509(n)^4, A163268(n)^6 and A240693(n)^10 are subsequences of this sequence.
The odd numbers in A023194 are a subsequence of this sequence.

Examples

			a(11) = 5^4 = 625 is followed by a(12) = 3^6 = 729 since no even power of an odd prime falls between them.
		

Programs

  • Mathematica
    a259417[bound_] := Module[{q, h, column = {}}, For[q = Prime[2], q^2 <= bound, q = NextPrime[q], For[h = 1, q^(2*h) <= bound, h++, AppendTo[column, q^(2*h)]]]; Prepend[Sort[column], 1]]
    a259417[25000] (* data *)
    With[{upto=25000},Select[Union[Flatten[Table[Prime[Range[2,Floor[ Sqrt[ upto]]]]^n,{n,0,Log[2,upto],2}]]],#<=upto&]] (* Harvey P. Dale, Nov 25 2017 *)

Formula

Sum_{n>=1} 1/a(n) = 1 + Sum_{k>=1} (P(2*k) - 1/2^(2*k)) = 1.21835996432366585110..., where P is the prime zeta function. - Amiram Eldar, Jul 10 2022

A193366 Primes of the form n^4 + n^3 + n^2 + n + 1 where n is nonprime.

Original entry on oeis.org

5, 22621, 245411, 346201, 637421, 837931, 2625641, 3835261, 6377551, 15018571, 16007041, 21700501, 30397351, 35615581, 52822061, 78914411, 97039801, 147753211, 189004141, 195534851, 209102521, 223364311, 279086341, 324842131, 421106401, 445120421, 566124791, 693025471, 727832821, 745720141, 880331261, 943280801, 987082981, 1544755411, 1740422941
Offset: 1

Views

Author

Jonathan Vos Post, Dec 20 2012

Keywords

Comments

Note that there are no primes of the form n^3 + n^2 + n + 1 = (n+1)*(n^2+1) as irreducible components over Z.
From Bernard Schott, May 15 2017: (Start)
These are the primes associated with A286094.
A088548 = A190527 Union {This sequence}.
All the numbers of this sequence n^4 + n^3 + n^2 + n + 1 = 11111_n with n > 1 are Brazilian numbers, so belong to A125134 and A085104. (End)

Examples

			a(1) = 1^4 + 1^3 + 1^2 + 1 + 1 = 5.
a(2) = 12^4 + 12^3 + 12^2 + 12 + 1 = 22621.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 150 do p(n):= 1+n+n^2+n^3+n^4;
    if tau(n)>2 and isprime(p(n)) then print(n,p(n)) else fi od: # Bernard Schott, May 15 2017
  • Mathematica
    Select[Map[Total[#^Range[0, 4]] &, Select[Range@ 204, ! PrimeQ@ # &]], PrimeQ] (* Michael De Vlieger, May 15 2017 *)
  • PARI
    print1(5);forcomposite(n=4,1e3,if(isprime(t=n^4+n^3+n^2+n+1),print1(", "t))) \\ Charles R Greathouse IV, Mar 25 2013

Formula

{n^4 + n^3 + n^2 + n + 1 where n is in A018252}.

A286094 Nonprime numbers n such that n^4 + n^3 + n^2 + n + 1 is prime.

Original entry on oeis.org

1, 12, 22, 24, 28, 30, 40, 44, 50, 62, 63, 68, 74, 77, 85, 94, 99, 110, 117, 118, 120, 122, 129, 134, 143, 145, 154, 162, 164, 165, 172, 175
Offset: 1

Views

Author

Bernard Schott, May 02 2017

Keywords

Comments

A065509 Union {this sequence} = A049409.
The corresponding prime numbers n^4 + n^3 + n^2 + n + 1 = 11111_n are in A193366; these Brazilian primes, except 5 which is not Brazilian, belong to A085104 and A285017.

Examples

			12 is in the sequence because 12^4 + 12^3 + 12^2 + 12 + 1 = 11111_12 = 22621, which is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 414, And[! PrimeQ@ #, PrimeQ[Total[#^Range[0, 4]]]] &] (* Michael De Vlieger, May 03 2017 *)
  • PARI
    isok(n)=if(n==1,5,if(ispseudoprime(n), 0, isprime(fromdigits([1, 1, 1, 1, 1], n))));
    getfirstterms(n)={my(L:list, c:small); L=List(); c=0; forstep(k=1, +oo, 1, if(isok(k), listput(L, k); if(c++==n, break))); return(Vec(L))} \\ R. J. Cano, May 09 2017

A339472 Integers k for which there is a divisor d, such that sigma(k) = d*sigma(d).

Original entry on oeis.org

1, 6, 12, 28, 30, 56, 117, 120, 132, 140, 182, 306, 380, 496, 552, 672, 775, 870, 992, 1080, 1287, 1406, 1428, 1680, 1722, 1892, 2016, 2184, 2256, 2480, 2793, 2862, 3276, 3540, 3640, 3782, 3960, 4060, 4556, 4560, 4650, 5112, 5382, 5402, 5460, 6120, 6320, 6552
Offset: 1

Views

Author

Marius A. Burtea, Dec 06 2020

Keywords

Comments

All terms are nonprimes.
The sequence includes all numbers of the form p*(p + 1) with p prime. Indeed: sigma(p*(p + 1)) = sigma(p)*sigma(p + 1) = (p + 1)*sigma(p + 1). So A036690 is a subsequence. Thus, the sequence is infinite.
Let k >= 1. If p and q = 1 + p + ... + p^(2*k) are prime numbers, then m = p^(2*k)*q is a term. Indeed, sigma(m) = sigma(p^(2*k)*q) = sigma(p^(2*k))*sigma(q) = q*sigma(q).
p is in: A053182 (k = 1), A065509 (k = 2), A163268 (k = 3), and A240693 (k = 5).
For k = 4 there are no prime p because 1 + p + p^2 + p^3 + p^4 + p^5 + p^6 + p^7 + p^8 = (p^6 + p^3 + 1)*(p^2 + p + 1).
If m = 2^(p - 1)*(2^p - 1), p >= 1, (see A006516), then sigma(m) = sigma(2^(p - 1)*(2^p - 1)) = sigma(2^(p - 1))*sigma(2^p - 1) = (2^p - 1)*sigma(2^p - 1), so m is a term.
Thus, A006516(n) and A000396(n), for n >= 1, are terms.

Examples

			sigma(6) = 12 = 3*4 = 3*sigma(3), so 6 is a term.
sigma(12) = 28 = 4*7 = 4*sigma(4), so 12 is a term.
sigma(30) = 72 = 6*12 = 6*sigma(6), so 30 is a term.
sigma(56) = 120 = 8*15 = 8*sigma(8), so 56 is a term.
sigma(117) = 182 = 13*14 = 13*sigma(13), so 117 is a term.
		

Crossrefs

Programs

  • Magma
    s:=func; [n:n in [1..6600]|s(n)];
    
  • Mathematica
    q[n_] := Module[{d = Divisors[n], s}, s = Plus @@ d; AnyTrue[d, #*DivisorSigma[1, #] == s &]]; Select[Range[7000], q] (* Amiram Eldar, Dec 06 2020 *)
  • PARI
    isok(k) = my(sk=sigma(k)); fordiv(k, d, if (d*sigma(d) == sk, return(1))); \\ Michel Marcus, Dec 06 2020
Showing 1-6 of 6 results.