cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065600 Triangle T(n,k) giving number of Dyck paths of length 2n with exactly k hills (0 <= k <= n).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 6, 4, 3, 0, 1, 18, 13, 6, 4, 0, 1, 57, 40, 21, 8, 5, 0, 1, 186, 130, 66, 30, 10, 6, 0, 1, 622, 432, 220, 96, 40, 12, 7, 0, 1, 2120, 1466, 744, 328, 130, 51, 14, 8, 0, 1, 7338, 5056, 2562, 1128, 455, 168, 63, 16, 9, 0, 1, 25724, 17672, 8942, 3941, 1590, 602, 210, 76, 18, 10, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 02 2001

Keywords

Comments

T(n,k) is the number of Łukasiewicz paths of length n having k level steps (i.e., (1,0)) on the x-axis. A Łukasiewicz path of length n is a path in the first quadrant from (0,0) to (n,0) using rise steps (1,k) for any positive integer k, level steps (1,0) and fall steps (1,-1) (see R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cambridge, 1999, p. 223, Exercise 6.19w; the integers are the slopes of the steps). Example: T(3,1)=2 because we have HUD and UDH, where H=(1,0), U(1,1) and D=(1,-1). - Emeric Deutsch, Jan 06 2005
The summand i*binomial(k+i,i)*binomial(2*n-2*k-2*i,n-k)/(n-k-i) in the Maple formula below counts Dyck n-paths containing k low peaks and k+i returns altogether. For example, with n=3, k=1, i=1, it counts the 2 paths UDUUDD, UUDDUD: each has k=1 low peaks and k+i=2 returns to ground level. - David Callan, Nov 02 2005
Renewal array for the Fine numbers: Riordan array (f(x)/x,f(x)) where f(x) is the g.f. for A000957. Row sums are the Catalan numbers A000108. - Paul Barry, Oct 30 2006, Jan 27 2009
T(n,k) is the number of 321-avoiding permutations of [n] having k fixed points. Example: T(4,2)=3 because we have 1243, 1324 and 2134. T(n,k) is the number of Dyck paths of semilength n having k centered tunnels. Example: T(4,2)=3 because we have UD(U)(U)(D)(D)UD, (U)UD(U)(D)UD(D) and (U)(U)UDUD(D)(D) (the extremities of the centered tunnels are shown between parentheses). - Emeric Deutsch, Sep 06 2007
Inverse of Riordan array ((1-2x)/(1-x)^2,x(1-2x)/(1-x)^2); see A124394. - Paul Barry, Jan 27 2009
Triangle read by rows, product of A033184 and A130595 considered as infinite lower triangular arrays; A065600 = A033184*A130595. - Philippe Deléham, Dec 07 2009
T(n,k) is the number of ordered, unlabeled, rooted trees with n+1 nodes that have exactly k subtrees of size 1. A subtree of size 1 is a subtree attached to the root that consists of only a single node. Cf. A000957 (column 1). - Geoffrey Critzer, Sep 16 2013
Also the convolution triangle of the Fine numbers A000957. - Peter Luschny, Oct 08 2022

Examples

			From _Philippe Deléham_, Feb 23 2012: (Start)
Triangle begins:
   1;
   0,  1;
   1,  0,  1;
   2,  2,  0,  1;
   6,  4,  3,  0,  1;
  18, 13,  6,  4,  0,  1;
  57, 40, 21,  8,  5,  0,  1; (End)
T(4,2)=3 because we have (UD)(UD)UUDD, (UD)UUDD(UD) and UUDD(UD)(UD), where U=(1,1), D=(1,-1) (the hills, i.e., peaks at level 1, are shown between parentheses).
		

Crossrefs

First columns are A000957, A065601, A294527.

Programs

  • Maple
    T := proc(n,k) if k0, b(x-1, y-1, 0)*`if`(t*y=1, z, 1), 0)+
          `if`(y (p-> seq(coeff(p, z, i), i=0..n))(b(n+n, 0$2)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Nov 02 2017
    # Uses function PMatrix from A357368. Adds a row above and a column to the left.
    PMatrix(10, A000957); # Peter Luschny, Oct 08 2022
  • Mathematica
    t[n_, k_] := If[ kJean-François Alcover, Dec 14 2011, after Maple *)
    nn=10;g=(1-(1-4x)^(1/2))/2;CoefficientList[Series[x/(1-(g-x+y x)),{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Sep 16 2013 *)
    T[ n_, k_] := If[ k < 0 || k > n, 0, Coefficient[ SeriesCoefficient[ Series[ 2 / (1 + 2*x + Sqrt[1 - 4*x] - 2*x*y), {x, 0, n}], {x, 0, n}], y, k]]; (* Michael Somos, Jun 01 2016 *)
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, polcoeff( polcoeff( 2 / (1 + 2*x + (1 - 4*x)^(1/2) - 2*x*y) + x * O(x^n), n), k))}; /* Michael Somos, Jun 01 2016 */

Formula

See Maple line.
G.f.: (1 - (1 - 4*x)^(1/2))/(x*(3 - y + (1 - 4*x)^(1/2)*(y-1))) = Sum_{n>=0, k>=0} T(n, k)x^n*y^k. - David Callan, Aug 17 2004
G.f.: 1/(1-xy-x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-.... (continued fraction). - Paul Barry, Jan 27 2009
G.f.: ((1-sqrt(1-4*x))/(3-sqrt(1-4*x)))^k = Sum_{n>=k} T(n+1,k+1)*x^n, where T(n,k) = (Sum_{i=0..n-k} (-1)^i*(k+i+1)*binomial(k+i,i)*binomial(2*n-k-i,n))/(n+1). - Vladimir Kruchinin, Dec 20 2011
T(n,k) = T(n-1,k-1) + Sum_{i>=0} T(n-1,k+1+i)*2^i. - Philippe Deléham, Feb 23 2012
G.f.: 2 / (1 + 2*x + (1 - 4*x)^(1/2) - 2*x*y). - Michael Somos, Jun 01 2016

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003