A065764 Sum of divisors of square numbers.
1, 7, 13, 31, 31, 91, 57, 127, 121, 217, 133, 403, 183, 399, 403, 511, 307, 847, 381, 961, 741, 931, 553, 1651, 781, 1281, 1093, 1767, 871, 2821, 993, 2047, 1729, 2149, 1767, 3751, 1407, 2667, 2379, 3937, 1723, 5187, 1893, 4123, 3751, 3871, 2257, 6643
Offset: 1
References
- W. J. LeVeque, Fundamentals of Number Theory, pp. 125 Problem 4, Dover NY 1996.
Links
- T. D. Noe, Table of n, a(n) for n=1..10000
- Wikipedia, Goormaghtigh conjecture.
Programs
-
GAP
a:=List([1..50],n->Sigma(n^2));; Print(a); # Muniru A Asiru, Jan 01 2019
-
Magma
[SumOfDivisors(n^2): n in [1..48]]; // Bruno Berselli, Apr 12 2011
-
Maple
with(numtheory): [sigma(n^2)$n=1..50]; # Muniru A Asiru, Jan 01 2019
-
Mathematica
Table[Plus@@Divisors[n^2], {n, 48}] (* Alonso del Arte, Feb 24 2012 *) f[p_, e_] := (p^(2*e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Sep 10 2020 *)
-
MuPAD
numlib::sigma(n^2)$ n=1..81 // Zerinvary Lajos, May 13 2008
-
PARI
a(n) = sigma(n^2); \\ Harry J. Smith, Oct 30 2009
-
Python
from math import prod from sympy import factorint def A065764(n): return prod((p**((e<<1)+1)-1)//(p-1) for p,e in factorint(n).items()) # Chai Wah Wu, Oct 25 2023
-
Sage
[sigma(n^2,1)for n in range(1,49)] # Zerinvary Lajos, Jun 13 2009
Formula
Multiplicative with a(p^e) = (p^(2*e+1)-1)/(p-1). - Vladeta Jovovic, Dec 01 2001
Dirichlet g.f.: zeta(s)*zeta(s-1)*zeta(s-2)/zeta(2*s-2), inverse Mobius transform of A000082. - R. J. Mathar, Mar 06 2011
Dirichlet convolution of A001157 by the absolute terms of A055615. Also the Dirichlet convolution of A048250 by A000290. - R. J. Mathar, Apr 12 2011
a(n) = Sum_{d|n} d*Psi(d), where Psi is A001615. - Enrique Pérez Herrero, Feb 25 2012
a(n) >= (n+1) * sigma(n) - n, where sigma is A000203, equality holds if n is in A000961. - Enrique Pérez Herrero, Apr 21 2012
Sum_{k=1..n} a(k) ~ 5*Zeta(3) * n^3 / Pi^2. - Vaclav Kotesovec, Jan 30 2019
Sum_{k>=1} 1/a(k) = 1.3947708738535614499846243600124612760835313454790187655653356563282177118... - Vaclav Kotesovec, Sep 20 2020
Comments