cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066223 Bisection of A000085.

Original entry on oeis.org

1, 2, 10, 76, 764, 9496, 140152, 2390480, 46206736, 997313824, 23758664096, 618884638912, 17492190577600, 532985208200576, 17411277367391104, 606917269909048576, 22481059424730751232, 881687990282453393920, 36494410645223834692096, 1589659519990672490875904
Offset: 0

Views

Author

N. J. A. Sloane, Dec 19 2001

Keywords

Comments

Number of tableaux on 2n elements. - Roberto E. Martinez II, Jan 09 2002
a(n) = number of ways to connect 2n points labeled 1,2,...,2n in a line with 0 or more arcs such that at most one arc leaves each point. For example, with arcs separated by dashes, a(2)=10 counts {} (no arcs), 12, 13, 14, 23, 24, 34, 12-34, 13-24, 14-23. - David Callan, Sep 18 2007
a(n) = A229223(2n,2) = A229243(2,n). - Alois P. Heinz, Sep 17 2013

References

  • S. Chowla, The asymptotic behavior of solutions of difference equations, in Proceedings of the International Congress of Mathematicians (Cambridge, MA, 1950), Vol. I, 377, Amer. Math. Soc., Providence, RI, 1952.

Crossrefs

Cf. A066224.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n+1,
          (4*n-2)*a(n-1)-2*(n-1)*(2*n-3)*a(n-2))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 17 2013
  • Mathematica
    NumberOfTableaux[2n]
    a[n_] := a[n] = If[n<2, n+1, (4*n-2)*a[n-1] - 2*(n-1)*(2*n-3)*a[n-2]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Oct 13 2014, after Alois P. Heinz *)
    Table[(-2)^n HypergeometricU[-n, 1/2, -(1/2)], {n, 0, 90}] (* Emanuele Munarini, Aug 31 2017 *)
  • PARI
    a(n)=sum(k=0,n,binomial(2*n,2*k)*prod(i=1,k,2*i-1))
    
  • PARI
    a(n)=if(n<0, 0, n*=2; n!*polcoeff(exp(x+x^2/2+x*O(x^n)),n))

Formula

a(n) = sum(k=0, n, C(2n, 2*k)*(2k-1)!!). - Benoit Cloitre, May 01 2003
a(n) = n!*2^n*LaguerreL(n, -1/2, -1/2). - Vladeta Jovovic, May 10 2003
E.g.f.: cosh(x)*exp(x^2/2) (with interpolated zeros) - Paul Barry, May 26 2003
E.g.f.: exp(x/(1-2*x))/sqrt(1-2*x). - Paul Barry, Apr 12 2010
a(n) = (1/sqrt(2*pi))*Int((1+x)^(2*n)*exp(-x^2/2),x,-infinity,infinity). - Paul Barry, Apr 21 2010
Conjecture: a(n) +2*(-2*n+1)*a(n-1) +2*(n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 24 2012
Remark: the above conjectured recurrence is true and can be obtained by the e.g.f. - Emanuele Munarini, Aug 31 2017
a(n) ~ n^n*2^(n-1/2)*exp(-n+sqrt(2*n)-1/4) * (1 + 7/(24*sqrt(2*n))). - Vaclav Kotesovec, Jun 22 2013

Extensions

More terms from Roberto E. Martinez II, Jan 09 2002