Original entry on oeis.org
-
Select[Range[65], PrimeQ[Product[Product[Prime[i],{i,1,n}],{n,1,#}]-1]&] (* Stefan Steinerberger, Apr 12 2006 *)
A066266
Product of first n primorials + 1.
Original entry on oeis.org
3, 13, 361, 75601, 174636001, 5244319080001, 2677277333530800001, 25968760179275365452000001, 5793445238736255798985527240000001, 37481813439427687898244906452608585200000001, 7517370874372838151564668004911177464757864076000000001
Offset: 1
a(3)=361 since 361 = (2)*(2*3)*(2*3*5) + 1.
-
Table[Times@@Table[Times@@Prime[Range[n]],{n,k}]+1,{k,40}] (* Jayanta Basu, May 12 2013 *)
Rest[FoldList[Times,1,Rest[FoldList[Times,1,Prime[Range[10]]]]]]+1 (* Harvey P. Dale, Sep 16 2013 *)
-
a(n) = 1 + prod(k=1, n, prime(k)^(n-k+1)) \\ Andrew Howroyd, Dec 10 2024
A066268
Product of first n primorials - 1.
Original entry on oeis.org
1, 11, 359, 75599, 174635999, 5244319079999, 2677277333530799999, 25968760179275365451999999, 5793445238736255798985527239999999, 37481813439427687898244906452608585199999999, 7517370874372838151564668004911177464757864075999999999
Offset: 1
a(3) = (2)*(2*3)*(2*3*5) - 1 = 359.
-
Table[Times@@Table[Times@@Prime[Range[n]],{n,k}]-1,{k,40}]
(* or *)
pr2=1; Table[pr1=1; Do[pr1=pr1*Prime[n],{n,k}]; pr2=pr2*pr1; pr2-1,{k,40}] (* Jayanta Basu, May 12 2013 *)
-
a(n) = -1 + prod(k=1, n, prime(k)^(n-k+1)) \\ Andrew Howroyd, Dec 10 2024
Showing 1-3 of 3 results.
Comments