cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066872 a(n) = prime(n)^2 + 1.

Original entry on oeis.org

5, 10, 26, 50, 122, 170, 290, 362, 530, 842, 962, 1370, 1682, 1850, 2210, 2810, 3482, 3722, 4490, 5042, 5330, 6242, 6890, 7922, 9410, 10202, 10610, 11450, 11882, 12770, 16130, 17162, 18770, 19322, 22202, 22802, 24650, 26570, 27890, 29930, 32042
Offset: 1

Views

Author

Joseph L. Pe, Jan 21 2002

Keywords

Comments

From R. J. Mathar, Aug 28 2011: (Start)
There are at least three "natural" embeddings of this function into multiplicative functions b(n), c(n) and d(n):
(i) The first is b(n) = 1, 5, 10, 0, 26, 0, 50, ... (n>=1) with b(p) = p^2+1, b(p^e)=0 if e>=2, substituting zero for all composite n.
(ii) The second is c(n) = 1, 5, 10, 9, 26, 50, 50, 17, 28, 130, ... (n>=1) with c(p^e)= p^(e+1)+1.
(iii) The third is d(n) = 1, 5, 10, 5, 26, 50, 50, 5, 10, 130, ... (n>=1) with d(p^e) = p^2+1 if e>=1. (End)
For n > 1, a(n)/2 is of the form 4*k+1. - Altug Alkan, Apr 08 2016

Crossrefs

Programs

Formula

a(n) = A002522(A000040(n)). - Altug Alkan, Apr 08 2016
a(n) = A000010(A000040(n)^2) + A323599(A000040(n)^2). - Torlach Rush, Jan 25 2019
Product_{n>=1} (1 - 1/a(n)) = Pi^2/15 (A182448). - Amiram Eldar, Nov 07 2022
From Antti Karttunen, Dec 24 2024: (Start)
a(n) = 1 + A001248(n).
a(n) = A000203(A000040(n)^3) / A000203(A000040(n)). (End)