cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A113901 Product of omega(n) and bigomega(n) = A001221(n)*A001222(n), where omega(x): number of distinct prime divisors of x. bigomega(x): number of prime divisors of x, counted with multiplicity.

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 3, 2, 4, 1, 6, 1, 4, 4, 4, 1, 6, 1, 6, 4, 4, 1, 8, 2, 4, 3, 6, 1, 9, 1, 5, 4, 4, 4, 8, 1, 4, 4, 8, 1, 9, 1, 6, 6, 4, 1, 10, 2, 6, 4, 6, 1, 8, 4, 8, 4, 4, 1, 12, 1, 4, 6, 6, 4, 9, 1, 6, 4, 9, 1, 10, 1, 4, 6, 6, 4, 9, 1, 10, 4, 4, 1, 12, 4, 4, 4, 8, 1, 12, 4, 6, 4, 4, 4, 12, 1, 6, 6, 8, 1, 9
Offset: 1

Views

Author

Cino Hilliard, Jan 29 2006

Keywords

Comments

Positions of first appearances are A328964. - Gus Wiseman, Nov 05 2019

Crossrefs

A307409(n) is (bigomega(n) - 1) * omega(n).
A328958(n) is sigma_0(n) - bigomega(n) * omega(n).

Programs

  • Mathematica
    Table[PrimeNu[n]*PrimeOmega[n], {n,1,50}] (* G. C. Greubel, Apr 23 2017 *)
  • PARI
    a(n) = omega(n)*bigomega(n);

Formula

a(n) = 1 iff n is prime.
A068993(a(n)) = 4. - Reinhard Zumkeller, Mar 13 2011
a(n) = A066921(n)*A066922(n). - Amiram Eldar, May 07 2025

A066922 a(n) = gcd(Omega(n), omega(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 1, 2, 1, 3, 1, 2, 3
Offset: 1

Views

Author

Benoit Cloitre, Jan 23 2002

Keywords

Crossrefs

Cf. A001221 (omega), A001222 (Omega), A066921, A113901.

Programs

  • Mathematica
    Table[GCD[PrimeOmega[n],PrimeNu[n]],{n,110}] (* Harvey P. Dale, Dec 05 2015 *)
  • PARI
    a(n) = { gcd(bigomega(n),omega(n)) } \\ Harry J. Smith, Apr 07 2010

Formula

a(n) = A113901(n)/A066921(n). - Amiram Eldar, May 07 2025
Showing 1-2 of 2 results.