A067029 Exponent of least prime factor in prime factorization of n, a(1)=0.
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 1
Offset: 1
Examples
a(18) = a(2^1 * 3^2) = 1.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Project Euler, Problem 779: Prime factor and exponent, (2022).
Programs
-
Haskell
a067029 = head . a124010_row -- Reinhard Zumkeller, Jul 05 2013, Jun 04 2012
-
Maple
A067029 := proc(n) local f,lp,a; a := 0 ; lp := n+1 ; for f in ifactors(n)[2] do p := op(1,f) ; if p < lp then a := op(2,f) ; lp := p; fi; end do: a ; end proc: # R. J. Mathar, Jul 08 2015 seq(ifelse(n = 1, 0, ifactors(n)[2][1][2]), n = 1..90); # Peter Luschny, Jun 15 2025
-
Mathematica
Join[{0},Table[FactorInteger[n][[1,2]],{n,2,100}]] (* Harvey P. Dale, Oct 14 2011 *)
-
PARI
a(n) = if (n==1, 0, factor(n)[1,2]); \\ Michel Marcus, May 15 2017
-
Python
from sympy import factorint def a(n): f=factorint(n) return 0 if n==1 else f[min(f)] # Indranil Ghosh, May 15 2017
-
Scheme
;; Naive implementation of A020639 is given under that entry. All of these functions could be also defined with definec to make them faster on the later calls. See http://oeis.org/wiki/Memoization#Scheme (define (A067029 n) (if (< n 2) 0 (let ((mp (A020639 n))) (let loop ((e 0) (n (/ n mp))) (cond ((integer? n) (loop (+ e 1) (/ n mp))) (else e)))))) ;; Antti Karttunen, May 29 2017
Formula
a(n) = A124010(n,1). - Reinhard Zumkeller, Aug 27 2011
a(A247180(n)) = 1. - Reinhard Zumkeller, Nov 23 2014
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} (Product_{i=1..k-1} (1 - 1/prime(i)))/(prime(k)-1) = 1/(prime(1)-1) + (1-1/prime(1))*(1/(prime(2)-1) + (1-1/prime(2))*(1/(prime(3)-1) + (1-1/prime(3))*( ... ))) = 1.6125177915... - Amiram Eldar, Oct 26 2021
Comments