cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067029 Exponent of least prime factor in prime factorization of n, a(1)=0.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 17 2002

Keywords

Comments

Even bisection is A001511: a(2n) = A007814(n) + 1. - Ralf Stephan, Jan 31 2004
Number of occurrences of the smallest part in the partition with Heinz number n. The Heinz number of a partition p = [p_1, p_2, ..., p_r] is defined as Product_{j=1..r} (p_j-th prime) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). Example: a(24)=3 because the partition with Heinz number 24 = 3*2*2*2 is [2,1,1,1]. - Emeric Deutsch, Oct 02 2015
Together with A028234 is useful for defining sequences that are multiplicative with a(p^e) = f(e), as recurrences of the form: a(1) = 1 and for n > 1, a(n) = f(A067029(n)) * a(A028234(n)). - Antti Karttunen, May 29 2017

Examples

			a(18) = a(2^1 * 3^2) = 1.
		

Crossrefs

Cf. A051903, A020639, A028233, A034684, A071178, first column of A124010, A247180.

Programs

  • Haskell
    a067029 = head . a124010_row
    -- Reinhard Zumkeller, Jul 05 2013, Jun 04 2012
    
  • Maple
    A067029 := proc(n)
        local f,lp,a;
        a := 0 ;
        lp := n+1 ;
        for f in ifactors(n)[2] do
            p := op(1,f) ;
            if p < lp then
                a := op(2,f) ;
                lp := p;
            fi;
        end do:
        a ;
    end proc: # R. J. Mathar, Jul 08 2015
    seq(ifelse(n = 1, 0, ifactors(n)[2][1][2]), n = 1..90); # Peter Luschny, Jun 15 2025
  • Mathematica
    Join[{0},Table[FactorInteger[n][[1,2]],{n,2,100}]] (* Harvey P. Dale, Oct 14 2011 *)
  • PARI
    a(n) = if (n==1, 0, factor(n)[1,2]); \\ Michel Marcus, May 15 2017
    
  • Python
    from sympy import factorint
    def a(n):
        f=factorint(n)
        return 0 if n==1 else f[min(f)] # Indranil Ghosh, May 15 2017
    
  • Scheme
    ;; Naive implementation of A020639 is given under that entry. All of these functions could be also defined with definec to make them faster on the later calls. See http://oeis.org/wiki/Memoization#Scheme
    (define (A067029 n) (if (< n 2) 0 (let ((mp (A020639 n))) (let loop ((e 0) (n (/ n mp))) (cond ((integer? n) (loop (+ e 1) (/ n mp))) (else e)))))) ;;  Antti Karttunen, May 29 2017

Formula

a(n) = A124010(n,1). - Reinhard Zumkeller, Aug 27 2011
A028233(n) = A020639(n)^a(n). - Reinhard Zumkeller, May 13 2006
a(A247180(n)) = 1. - Reinhard Zumkeller, Nov 23 2014
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} (Product_{i=1..k-1} (1 - 1/prime(i)))/(prime(k)-1) = 1/(prime(1)-1) + (1-1/prime(1))*(1/(prime(2)-1) + (1-1/prime(2))*(1/(prime(3)-1) + (1-1/prime(3))*( ... ))) = 1.6125177915... - Amiram Eldar, Oct 26 2021