cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A061912 a(n) is the smallest m for which sqrt(sum of digits of m^2) = n.

Original entry on oeis.org

0, 1, 2, 3, 13, 67, 264, 1667, 16667, 94863, 1643167, 29983327, 706399164, 31144643167, 1296109172867, 62441868958167, 6927459779738887, 447213595487659543, 77453069648658793167, 14104963594032775808167, 3146266035952345970972687
Offset: 0

Views

Author

Asher Auel, May 17 2001

Keywords

Comments

a(15) <= 62441868958167. - Donovan Johnson, Jul 10 2012
a(21) <= 29999999949999914454883190583. a(22) <= 948566760423324122079007168333. - Zhining Yang, Jun 21 2024

Examples

			Sum of digits of 13^2 = sum of digits of 169 = 16 is the first occurrence of 4^2, so a(4) = 13.
		

Crossrefs

Programs

  • Maple
    f := []: a := 1: for i from 1 to 10 do for j from 1 do if sqrt(convert(convert(j^2,base,10),`+`)) = i then f := [op(f),j]; a := j; break fi; od; od; f;
  • Mathematica
    t={}; m=0; Do[While[Sqrt[Total[IntegerDigits[m^2]]] != n, m++]; AppendTo[t, m], {n,0,9}]; t (* Jayanta Basu, May 06 2013 *)
  • PARI
    a(n) = my(k=0); while(sumdigits(k^2) != n^2, k++); k; \\ Michel Marcus, Jan 07 2017

Extensions

a(11) from John W. Layman, Jan 10 2002
a(12) from Ryan Propper, Jul 07 2005
a(13) from Zak Seidov, Jan 27 2011
a(14) from Donovan Johnson, Jul 10 2012
a(15)-a(20) from Zhining Yang, Jun 21 2024

A067074 a(n) = smallest cube m^3 such that the sum of the digits of m^3 is equal to n^3.

Original entry on oeis.org

0, 1, 8, 19683, 1693669888, 39677989979796875, 56984998629886989599887999587
Offset: 0

Views

Author

Amarnath Murthy, Jan 05 2002

Keywords

Comments

If n = 6*k, a(n) <= A272066(n^3/18). - Seiichi Manyama, Aug 12 2017

Examples

			a(3) = 19683 as it is the smallest cube whose digit sum = 27 = 3^3.
		

Crossrefs

Formula

a(n) = A067075(n)^3. - R. J. Mathar, Aug 23 2018

Extensions

Corrected by Stefan Steinerberger, Nov 09 2005, using existing corrections to A067075
a(0)=0 prepended by Seiichi Manyama, Aug 12 2017

A291145 a(n) is the smallest fourth power m^4 such that the sum of the digits of m^4 is equal to n^4.

Original entry on oeis.org

0, 1, 14641, 4228599998736, 2598836588984899974898904499869498896
Offset: 0

Views

Author

Seiichi Manyama, Aug 18 2017

Keywords

Crossrefs

Formula

a(n) = A286650(n)^4.

A328374 a(n) is the smallest fifth power m^5 such that the sum of the digits of m^5 is equal to n^5.

Original entry on oeis.org

0, 1, 229345007, 396896379392866465976597929779996699
Offset: 0

Views

Author

Seiichi Manyama, Oct 14 2019

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = my(k=0); while(sumdigits(k^5) != n^5, k++); k^5}

Formula

a(n) = A328364(n)^5.
Showing 1-4 of 4 results.