cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A067411 Third column of triangle A067410 and second column of A067417.

Original entry on oeis.org

1, 4, 24, 144, 864, 5184, 31104, 186624, 1119744, 6718464, 40310784, 241864704, 1451188224, 8707129344, 52242776064, 313456656384, 1880739938304, 11284439629824, 67706637778944, 406239826673664
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Comments

Let f(k) be the sum of the smallest three positive divisors of k, g(k) be the sum of the largest two positive divisors of k, this sequence from a(2) onwards contains the numbers k for which g(k) is a positive integer power of f(k). - Yifan Xie, Jan 27 2024

Crossrefs

A002001, A067412 (second and fourth column of A067410), A000244, A067403 (first and third column of A067417), A000400 (powers of 6).
Row sums of A038195.

Programs

  • Mathematica
    CoefficientList[Series[(1-2x)/(1-6x),{x,0,30}],x] (* Harvey P. Dale, Feb 26 2015 *)
  • PARI
    a(n) = if(n<=0, 0, 4*6^(n-1) ); \\ Joerg Arndt, Feb 23 2014

Formula

a(n) = A067410(n+2, 2) = A067417(n+1, 1).
a(n) = 4 * 6^(n-1), for n >= 1, a(0)=1.
G.f.: (1-2*x)/(1-6*x).
E.g.f.: (2*exp(6*x)+1) / 3 = exp(3*x)*(cosh(3*x) + sinh(3*x)/3). - Paul Barry, Nov 20 2003
a(n) = Sum_{k=0..n} C(n,k) * A001045(n+k+1). - Paul Barry, Apr 19 2010

Extensions

Incorrect formula deleted by Harvey P. Dale, Feb 26 2015
Formula restored by Sean A. Irvine, Jan 10 2021

A067402 Triangle with columns built from certain power sequences.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 12, 5, 1, 1, 48, 45, 7, 1, 1, 192, 405, 112, 9, 1, 1, 768, 3645, 1792, 225, 11, 1, 1, 3072, 32805, 28672, 5625, 396, 13, 1, 1, 12288, 295245, 458752, 140625, 14256, 637, 15, 1, 1, 49152, 2657205, 7340032, 3515625, 513216, 31213, 960, 17, 1
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Examples

			Triangle starts:
      m=0   1   2   3   4
  n=0:  1;
  n=1:  1,  1;
  n=2:  1,  3,  1;
  n=3:  1, 12,  5,  1;
  n=4:  1, 48, 45,  7,  1;
  ...
		

Crossrefs

Cf. A009998 (triangle built from powers of (m+1)).
Columns m=0..8: A000012, A002001, A067403-A067409.

Programs

  • Mathematica
    A[n_,m_]:=If[n==m,1,(2m+1)(m+1)^(2(n-m-1))]; Flatten[Table[A[n,m],{n,0,9},{m,0,n}]] (* Stefano Spezia, Sep 30 2022 *)

Formula

a(n, m) = 1 if n=m; a(n, m) = (2*m+1)*(m+1)^(2*(n-m-1)) if n>m>=0.
G.f. for column m: (x^m)*(1-x*m^2)/(1-x*(m+1)^2).

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 11 2002

A067417 Triangle with columns built from certain power sequences.

Original entry on oeis.org

1, 3, 1, 9, 4, 1, 27, 24, 5, 1, 81, 144, 45, 6, 1, 243, 864, 405, 72, 7, 1, 729, 5184, 3645, 864, 105, 8, 1, 2187, 31104, 32805, 10368, 1575, 144, 9, 1, 6561, 186624, 295245, 124416, 23625, 2592, 189, 10, 1, 19683, 1119744, 2657205, 1492992, 354375, 46656, 3969, 240, 11, 1
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Examples

			Triangle starts:
   1;
   3,  1;
   9,  4, 1;
  27, 24, 5, 1;
  ...
		

Crossrefs

Cf. A009998 (triangle built from powers of (m+1)), A067402, A067410.

Programs

  • Mathematica
    A[n_,m_]:=If[n==m,1,(m+3)(3(m+1))^(n-m-1)]; Flatten[Table[A[n,m],{n,0,9},{m,0,n}]] (* Stefano Spezia, Sep 30 2022 *)

Formula

a(n, m) = 1 if n = m; a(n, m) = (m+3)*(3*(m+1))^(n-m-1) if n > m >= 0.
G.f. for column m: (x^m)*(1-2*m*x)/(1-3*(m+1)*x).

A067419 Fourth column of triangle A067417.

Original entry on oeis.org

1, 6, 72, 864, 10368, 124416, 1492992, 17915904, 214990848, 2579890176, 30958682112, 371504185344, 4458050224128, 53496602689536, 641959232274432, 7703510787293184, 92442129447518208, 1109305553370218496, 13311666640442621952, 159739999685311463424
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Crossrefs

Cf. A067403 (third column), A067420 (fifth column), A001021 (powers of 12).

Programs

  • Magma
    [Ceiling(6*(3*4)^(n-1)): n in [0..20]]; // Vincenzo Librandi, Oct 02 2011
  • Mathematica
    Join[{1}, NestList[12*# &, 6, 20]] (* Paolo Xausa, Sep 03 2024 *)

Formula

a(n) = A067417(n+3, 3).
a(n) = 6*(3*4)^(n-1), n >= 1, a(0)=1.
G.f.: (1-6*x)/(1-12*x).
a(n) = Sum_{k=0..n} A134309(n,k)*6^k = Sum_{k=0..n} A055372(n,k)*5^k. - Philippe Deléham, Feb 04 2012

A067404 Fourth column of triangle A067402.

Original entry on oeis.org

1, 7, 112, 1792, 28672, 458752, 7340032, 117440512, 1879048192, 30064771072, 481036337152, 7696581394432, 123145302310912, 1970324836974592, 31525197391593472, 504403158265495552, 8070450532247928832, 129127208515966861312, 2066035336255469780992, 33056565380087516495872
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Crossrefs

Cf. A067403 (third column), A067405 (fifth column), A001025 (powers of 16).
Cf. A067402.

Programs

  • Mathematica
    CoefficientList[Series[(1-9x)/(1-16x),{x,0,20}],x] (* Harvey P. Dale, Jun 02 2017 *)

Formula

a(n) = A067402(n+3, 3).
a(n) = 7*16^(n-1), n>=1, a(0) = 1.
G.f.: (1-9*x)/(1-16*x).
E.g.f.: (9 + 7*exp(16*x))/16. - Stefano Spezia, Sep 30 2022

Extensions

More terms from Harvey P. Dale, Jun 02 2017

A270369 Expansion of g.f. (1-7*x)/(1-9*x).

Original entry on oeis.org

1, 2, 18, 162, 1458, 13122, 118098, 1062882, 9565938, 86093442, 774840978, 6973568802, 62762119218, 564859072962, 5083731656658, 45753584909922, 411782264189298, 3706040377703682, 33354363399333138, 300189270593998242, 2701703435345984178, 24315330918113857602, 218837978263024718418
Offset: 0

Views

Author

Colin Barker, Mar 18 2016

Keywords

Crossrefs

Cf. A001019 (powers of 9), A054879 (partial sums), A132025.
Cf. similar sequences with g.f. (1-k*x)/(1-9*x) and k=0..8: A001019 (k=0; k=8 gives two initial 1's ), A055275 (k=1), A270472 (k=2), A092810 (k=3), A067403 (k=4), A270473 (k=5), A102518 (k=6), this sequence (k=7).

Programs

  • Mathematica
    CoefficientList[Series[(1-7x)/(1-9x),{x,0,20}],x] (* or *) Join[ {1}, NestList[9#&,2,20]] (* Harvey P. Dale, Oct 15 2017 *)
  • PARI
    Vec((1-7*x)/(1-9*x) + O(x^30))

Formula

G.f.: (1-7*x)/(1-9*x).
a(n) = 9*a(n-1) for n>1.
a(n) = 2*9^(n-1) for n>0.
From Amiram Eldar, May 08 2023: (Start)
Sum_{n>=0} 1/a(n) = 25/16.
Sum_{n>=0} (-1)^n/a(n) = 11/20.
Product_{n>=1} (1 - 1/a(n)) = A132025. (End)
E.g.f.: (2*exp(9*x) + 7)/9. - Elmo R. Oliveira, Mar 25 2025

A270473 Expansion of g.f. (1-5*x)/(1-9*x).

Original entry on oeis.org

1, 4, 36, 324, 2916, 26244, 236196, 2125764, 19131876, 172186884, 1549681956, 13947137604, 125524238436, 1129718145924, 10167463313316, 91507169819844, 823564528378596, 7412080755407364, 66708726798666276, 600378541187996484, 5403406870691968356, 48630661836227715204
Offset: 0

Views

Author

Colin Barker, Mar 17 2016

Keywords

Comments

Also squares that can be expressed as the sum of two powers of three (3^x + 3^y), except a(0). - Karl-Heinz Hofmann, Sep 03 2022

Crossrefs

Cf. A001019 (powers of 9), A083884 (partial sums).
Cf. A067403: (1-4*x)/(1-9*x); A102518: (1-6*x)/(1-9*x).

Programs

  • Mathematica
    Join[{1},NestList[9#&,4,20]] (* Harvey P. Dale, Oct 23 2022 *)
  • PARI
    Vec((1-5*x)/(1-9*x) + O(x^30))

Formula

G.f.: (1-5*x)/(1-9*x).
a(n) = 9*a(n-1) for n>1.
a(n) = 4*9^(n-1) for n>0.
E.g.f.: (4*exp(9*x) + 5)/9. - Stefano Spezia, Jul 09 2024

A331741 Squares s such that A331733(s) = sigma(A225546(n)) is congruent to 2 modulo 4.

Original entry on oeis.org

16, 144, 400, 784, 1936, 2704, 3600, 4624, 5776, 7056, 8464, 10000, 13456, 15376, 17424, 19600, 21904, 24336, 26896, 29584, 35344, 38416, 41616, 44944, 48400, 51984, 55696, 59536, 67600, 71824, 76176, 80656, 85264, 90000, 94864, 99856, 104976, 110224, 115600, 121104, 126736, 132496, 138384, 144400, 150544, 163216, 169744, 176400
Offset: 1

Views

Author

Antti Karttunen, Feb 03 2020

Keywords

Comments

Squares s for which A331733(s) is two times an odd number, i.e., squares s such that A007814(A331733(s)) == 1.
For each term k present, A006519(k) = 2^(2^e), with A000040(1+e) == 1 (mod 4). See A191218, A228058.
Equal to the sequence A225546(A191218(n)), for n >= 1, when its elements are sorted into ascending order.

Crossrefs

Programs

  • Mathematica
    Select[Range[100]^2, Mod[DivisorSigma[1, If[# == 1, 1, Apply[Times, Flatten@ Map[Function[{p, e}, Map[Prime[Log2@# + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]]]], 4] == 2 &] (* Michael De Vlieger, Feb 08 2020 *)
  • PARI
    k=0; for(n=1,500,if(!(n%2)&&(1==A007814(A331733(n^2))),k++; write("b331741.txt", k, " ", n^2); print(n^2, " -> ", factor(n^2),", ")));

Formula

{n: A010052(n)*A007814(A331733(n)) == 1}.

A384853 Squared length of interior diagonal of n-th (U, V)-crossbox, where U = (1, 0, 1) and V = (0, 1, 0), as in Comments.

Original entry on oeis.org

1, 5, 9, 21, 57, 165, 489, 1461, 4377, 13125, 39369, 118101, 354297, 1062885, 3188649, 9565941, 28697817, 86093445, 258280329, 774840981, 2324522937, 6973568805, 20920706409, 62762119221, 188286357657, 564859072965, 1694577218889, 5083731656661
Offset: 1

Views

Author

Clark Kimberling, Jul 02 2025

Keywords

Comments

Suppose that U and V are 3-dimensional vectors over the field of real numbers. Define f(1) = U, f(2) = V, f(3) = UxV, where x = cross product, and for n>=2, define f(n) = h(n - 1), g(n) = f(n - 1) + g(n - 1) - h(n - 1), h(n) = f(n) x g(n).
The parallelopiped having edge vectors f(n), g(n), h(n) is the n-th (U,V)-crossbox, with volume |f(n).(g(n) x h(n))|, where . = dot product, and interior diagonal length ||g(n)||. These two sequences, after removal of their first 2 terms, are given for selected U and V by the following table, except for the 3 initial terms:
U V volume squared diagonal length, ||g(n)||^2
(1, 0, 0) (0, 1, 0) A000079 A052548
(1, 0, 0) (0, 1, 1) A008776 3*A052919
(1, 0, 0) (1, 0, 1) A000351 A178676
(1, 0, 0) (1, 1, 1) A167747 5*A204061
(1, 0, 0) (0, 2, 0) A005054 4*A199215
(1, 0, 0) (1, 2, 0) A013731 8*A199552
(1, 0, 0) (2, 1, 0) A011557 10*A000533
(1, 0, 0) (1, 1, 2) A067403 18*A135423
(1, 0, 0) (2, 1, 1) A334603 11*A199750
(1, 0, 1) (0, 1, 0) A008776 this sequence
(1, 1, 0) (0, 1, 1) A081341 6*A199318
(1, 1, 0) (1, 1, 1) A270369 9*A199559
(1, 2, 3) (3, 2, 1) 2*A009992 48 + 96*A009992

Examples

			Taking U = (1, 0, 1) and V = (0, 1, 0), successive edge vectors are given by
(f(n)) = ( (1, 0, 1), (-1,0,1), (-1,2,-1), (3,0,-3), (3,-6,3), ...)
(g(n)) = ( (0,1,0), (2,1,0), (2,-1,2), (-2,1,4), (-2,7,-2), (10,1,-8), ...)
(h(n)) = ( (-1.0,1), (-1,2,-1), (3,0,-3), (3,-6,3), (-9,0,9),...)
The successive volumes are (2, 6, 18, 54, 162, 486, 1458, 4374, 13122,...).
The lengths of diagonals of the first five crossboxes are 1, sqrt(5), 3, sqrt(21), sqrt(57), so the first five squared lengths are 1, 5, 9, 21, 57.
		

Crossrefs

Programs

  • Mathematica
    f[1] = {1, 0, 1}; g[1] = {0, 1, 0}; h[1] = Cross[f[1], g[1]];
    f[n_] := f[n] = h[n - 1];
    g[n_] := g[n] = f[n - 1] + g[n - 1] - h[n - 1];
    h[n_] := h[n] = Cross[f[n], g[n]];
    v[n_] := f[n] . Cross[g[n], h[n]] (* signed volume of nth parallelopiped P(n) *)
    d[n_] := Norm[g[n]] (* length of interior diagonal of P(n) *)
    Column[Table[{f[n], g[n], h[n]}, {n, 1, 16}]]  (* edge vectors of P(n) *)
    Table[v[n], {n, 1, 16}]  (* A008776 *)
    u = Table[d[n]^2, {n, 1, 30}] (* A384853 *)
    Join[{1},Table[1+2*(3^(n-1)+1),{n,40}]] (* or *) LinearRecurrence[{4,-3},{1,5,9},50] (* Harvey P. Dale, Jul 20 2025 *)

Formula

a(0) = 1, a(n) = 1 + 2 * (3^(n-1)+1) for n>=1.
a(n) = 4*a(n-1) - 3*a(n-2) for n>=4.
In general, suppose that U = (a,b,c) and V = (s,t,u), and let D = -(a^2 + b^2 + c^2 + s^2 + t^2 + u^2 + 2 (a s + b t + c u)). Then, linear recurrences are given for n>=3 by f(n) = D*f (n - 2), g(n) = g(n - 1) + D*g(n - 2) - D*g(n - 3), h(n) = D*h(n - 2). If w(n) denotes the volume of the n-th (U,V)-crossbox, then w(n) = D*w(n-1) for n>=2.
Showing 1-9 of 9 results.