cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A067411 Third column of triangle A067410 and second column of A067417.

Original entry on oeis.org

1, 4, 24, 144, 864, 5184, 31104, 186624, 1119744, 6718464, 40310784, 241864704, 1451188224, 8707129344, 52242776064, 313456656384, 1880739938304, 11284439629824, 67706637778944, 406239826673664
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Comments

Let f(k) be the sum of the smallest three positive divisors of k, g(k) be the sum of the largest two positive divisors of k, this sequence from a(2) onwards contains the numbers k for which g(k) is a positive integer power of f(k). - Yifan Xie, Jan 27 2024

Crossrefs

A002001, A067412 (second and fourth column of A067410), A000244, A067403 (first and third column of A067417), A000400 (powers of 6).
Row sums of A038195.

Programs

  • Mathematica
    CoefficientList[Series[(1-2x)/(1-6x),{x,0,30}],x] (* Harvey P. Dale, Feb 26 2015 *)
  • PARI
    a(n) = if(n<=0, 0, 4*6^(n-1) ); \\ Joerg Arndt, Feb 23 2014

Formula

a(n) = A067410(n+2, 2) = A067417(n+1, 1).
a(n) = 4 * 6^(n-1), for n >= 1, a(0)=1.
G.f.: (1-2*x)/(1-6*x).
E.g.f.: (2*exp(6*x)+1) / 3 = exp(3*x)*(cosh(3*x) + sinh(3*x)/3). - Paul Barry, Nov 20 2003
a(n) = Sum_{k=0..n} C(n,k) * A001045(n+k+1). - Paul Barry, Apr 19 2010

Extensions

Incorrect formula deleted by Harvey P. Dale, Feb 26 2015
Formula restored by Sean A. Irvine, Jan 10 2021

A067419 Fourth column of triangle A067417.

Original entry on oeis.org

1, 6, 72, 864, 10368, 124416, 1492992, 17915904, 214990848, 2579890176, 30958682112, 371504185344, 4458050224128, 53496602689536, 641959232274432, 7703510787293184, 92442129447518208, 1109305553370218496, 13311666640442621952, 159739999685311463424
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Crossrefs

Cf. A067403 (third column), A067420 (fifth column), A001021 (powers of 12).

Programs

  • Magma
    [Ceiling(6*(3*4)^(n-1)): n in [0..20]]; // Vincenzo Librandi, Oct 02 2011
  • Mathematica
    Join[{1}, NestList[12*# &, 6, 20]] (* Paolo Xausa, Sep 03 2024 *)

Formula

a(n) = A067417(n+3, 3).
a(n) = 6*(3*4)^(n-1), n >= 1, a(0)=1.
G.f.: (1-6*x)/(1-12*x).
a(n) = Sum_{k=0..n} A134309(n,k)*6^k = Sum_{k=0..n} A055372(n,k)*5^k. - Philippe Deléham, Feb 04 2012

A067420 Fifth column of triangle A067417.

Original entry on oeis.org

1, 7, 105, 1575, 23625, 354375, 5315625, 79734375, 1196015625, 17940234375, 269103515625, 4036552734375, 60548291015625, 908224365234375, 13623365478515625, 204350482177734375, 3065257232666015625
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Crossrefs

Cf. A067419 (fourth column), A067421 (sixth column), A001024 (powers of 15).

Programs

Formula

a(n) = A067417(n+4, 4).
a(n) = 7*(3*5)^(n-1), n >= 1, a(0)=1.
G.f.: (1-8*x)/(1-15*x).

A067421 Sixth column of triangle A067417.

Original entry on oeis.org

1, 8, 144, 2592, 46656, 839808, 15116544, 272097792, 4897760256, 88159684608, 1586874322944, 28563737812992, 514147280633856, 9254651051409408, 166583718925369344, 2998506940656648192
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Crossrefs

Cf. A067420 (fifth column), A067422 (seventh column), A001027 (powers of 18).

Programs

Formula

a(n) = A067417(n+5, 5).
a(n) = 8*(3*6)^(n-1), n >= 1, a(0)=1.
G.f.: (1-10*x)/(1-18*x).

A067422 Seventh column of triangle A067417.

Original entry on oeis.org

1, 9, 189, 3969, 83349, 1750329, 36756909, 771895089, 16209796869, 340405734249, 7148520419229, 150118928803809, 3152497504879989, 66202447602479769, 1390251399652075149, 29195279392693578129
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Crossrefs

Cf. A067421 (sixth column), A067423 (eighth column), A009965 (powers of 21).

Programs

Formula

a(n) = A067417(n+6, 6).
a(n) = 9*(3*7)^(n-1), n >= 1, a(0)=1.
G.f.: (1-12*x)/(1-21*x).

A067423 Eighth column of triangle A067417.

Original entry on oeis.org

1, 10, 240, 5760, 138240, 3317760, 79626240, 1911029760, 45864714240, 1100753141760, 26418075402240, 634033809653760, 15216811431690240, 365203474360565760, 8764883384653578240, 210357201231685877760
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Crossrefs

Cf. A067422 (seventh column), A067424 (ninth column), A009968 (powers of 24).

Programs

Formula

a(n) = A067417(n+7, 7).
a(n) = 10*(3*8)^(n-1), n >= 1, a(0)=1.
G.f.: (1-14*x)/(1-24*x).

A067424 Ninth column of triangle A067417.

Original entry on oeis.org

1, 11, 297, 8019, 216513, 5845851, 157837977, 4261625379, 115063885233, 3106724901291, 83881572334857, 2264802453041139, 61149666232110753, 1651040988266990331, 44578106683208738937, 1203608880446635951299
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Crossrefs

Cf. A067417, A067423 (eighth column), A009971 (powers of 27).

Programs

  • Magma
    [Ceiling(11*(3*9)^(n-1)): n in [0..20]]; // Vincenzo Librandi, Oct 02 2011
  • Mathematica
    CoefficientList[Series[(1-16x)/(1-27x),{x,0,30}],x] (* or *) LinearRecurrence[{27},{1,11},20] (* Harvey P. Dale, Apr 20 2022 *)

Formula

a(n) = A067417(n+8, 8).
a(n) = 11*(3*9)^(n-1), n >= 1, a(0)=1.
G.f.: (1-16*x)/(1-27*x).
E.g.f.: (16 + 11*exp(27*x))/27. - Stefano Spezia, Sep 30 2022

A001018 Powers of 8: a(n) = 8^n.

Original entry on oeis.org

1, 8, 64, 512, 4096, 32768, 262144, 2097152, 16777216, 134217728, 1073741824, 8589934592, 68719476736, 549755813888, 4398046511104, 35184372088832, 281474976710656, 2251799813685248, 18014398509481984, 144115188075855872, 1152921504606846976, 9223372036854775808, 73786976294838206464, 590295810358705651712, 4722366482869645213696
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 8), L(1, 8), P(1, 8), T(1, 8). Essentially same as Pisot sequences E(8, 64), L(8, 64), P(8, 64), T(8, 64). See A008776 for definitions of Pisot sequences.
If X_1, X_2, ..., X_n is a partition of the set {1..2n} into blocks of size 2 then, for n>=1, a(n) is equal to the number of functions f : {1..2n} -> {1,2,3} such that for fixed y_1,y_2,...,y_n in {1,2,3} we have f(X_i)<>{y_i}, (i=1..n). - Milan Janjic, May 24 2007
This is the auto-convolution (convolution square) of A059304. - R. J. Mathar, May 25 2009
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 8-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
a(n) is equal to the determinant of a 3 X 3 matrix with rows 2^(n+2), 2^(n+1), 2^n; 2^(n+3), 2^(n+4), 2(n+3); 2^n, 2^(n+1), 2^(n+2) when it is divided by 144. - J. M. Bergot, May 07 2014
a(n) gives the number of small squares in the n-th iteration of the Sierpinski carpet fractal. Equivalently, the number of vertices in the n-Sierpinski carpet graph. - Allan Bickle, Nov 27 2022

Examples

			For n=1, the 1st order Sierpinski carpet graph is an 8-cycle.
		

References

  • K. H. Rosen et al., eds., Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2017; p. 15.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000079 (powers of 2), A000244 (powers of 3), A000302 (powers of 4), A000351 (powers of 5), A000400 (powers of 6), A000420 (powers of 7), A001019 (powers of 9), ..., A001029 (powers of 19), A009964 (powers of 20), ..., A009992 (powers of 48), A087752 (powers of 49), A165800 (powers of 50), A159991 (powers of 60).
Cf. A032766 (floor(3*n/2)).
Cf. A271939 (number of edges in the n-Sierpinski carpet graph).

Programs

Formula

a(n) = 8^n.
a(0) = 1; a(n) = 8*a(n-1) for n > 0.
G.f.: 1/(1-8*x).
E.g.f.: exp(8*x).
Sum_{n>=0} 1/a(n) = 8/7. - Gary W. Adamson, Aug 29 2008
a(n) = A157176(A008588(n)); a(n+1) = A157176(A016969(n)). - Reinhard Zumkeller, Feb 24 2009
From Stefano Spezia, Dec 28 2021: (Start)
a(n) = (-1)^n*(1 + sqrt(-3))^(3*n) (see Nunn, p. 9).
a(n) = (-1)^n*Sum_{k=0..floor(3*n/2)} (-3)^k*binomial(3*n, 2*k) (see Nunn, p. 9). (End)

A067425 Triangle with columns built from certain power sequences.

Original entry on oeis.org

1, 4, 1, 16, 5, 1, 64, 40, 6, 1, 256, 320, 72, 7, 1, 1024, 2560, 864, 112, 8, 1, 4096, 20480, 10368, 1792, 160, 9, 1, 16384, 163840, 124416, 28672, 3200, 216, 10, 1, 65536, 1310720, 1492992, 458752, 64000
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Comments

The fifth column (m=4) gives [1, 8, 160, 3200, 64000, 1280000, 25600000, ...].

Examples

			Triangle starts:
   1;
   4,  1;
  16,  5,  1;
  64, 40,  6,  1;
  ...
		

Crossrefs

Columns 0..3 are A000302 (powers of 4), A067412, A067419, A067404.
Columns 5..8 are A067426, A067427, A067428, A067429.

Programs

  • Mathematica
    A067425[n_, m_] := If[n == m, 1, (m + 4)*(4*(m + 1))^(n - m - 1)];
    Table[A067425[n, m], {n, 0, 10}, {m, 0, n}] (* Paolo Xausa, Oct 16 2024 *)

Formula

T(n,m) = 1 if n = m; T(n,m) = (m+4)*(4*(m+1))^(n-m-1) if n > m >= 0, else 0.
G.f. for column m: (x^m)*(1-3*m*x)/(1-4*(m+1)*x).
Showing 1-9 of 9 results.