Original entry on oeis.org
1, 3, 10, 25, 60, 133, 284, 585, 1175, 2310, 4464, 8502, 15995, 29775, 54920, 100487, 182556, 329555, 591550, 1056405, 1877821, 3323868, 5860800, 10297500, 18033925, 31487643, 54824854, 95211205, 164948700, 285121105, 491804144, 846631137, 1454746355, 2495275650
Offset: 0
-
a:=n->sum(binomial(n-j,j)*n*j/2,j=0..n): seq(a(n), n=2..30); # Zerinvary Lajos, Oct 19 2006
-
Table[((n+2)((3n+5)Fibonacci[n+1]+(n+1)Fibonacci[n]))/10,{n,0,30}] (* Harvey P. Dale, Feb 02 2020 *)
A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A067331
Convolution of Fibonacci F(n+1), n >= 0, with F(n+3), n >= 0.
Original entry on oeis.org
2, 5, 12, 25, 50, 96, 180, 331, 600, 1075, 1908, 3360, 5878, 10225, 17700, 30509, 52390, 89664, 153000, 260375, 442032, 748775, 1265832, 2136000, 3598250, 6052061, 10164540, 17048641, 28559450, 47786400, 79870428, 133359715, 222457608, 370747675, 617363100
Offset: 0
From _John M. Campbell_, Jan 03 2016: (Start)
Letting n=2, the external path length of the Fibonacci tree T(5) of order n+3=5 illustrated below is 12 = a(2) = F(1)*F(5) + F(2)*F(4) + F(3)*F(3).
.
/ \
/\ /\
/\
(End)
- D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.
- Robert Israel, Table of n, a(n) for n = 0..4720
- Matthew Blair, Rigoberto Flórez, Antara Mukherjee, and José L. Ramírez, Matrices in the determinant Hosoya triangle, Fibonacci Quart. 58 (2020), no. 5, 34-54.
- Matthew Blair, Rigoberto Flórez, and Antara Mukherjee, Geometric Patterns in The Determinant Hosoya Triangle, INTEGERS, A90, 2021.
- J. Bodeen, S. Butler, T. Kim, X. Sun, and S. Wang, Tiling a strip with triangles, Electron. J. Combin. 21 (1) (2014), P1.7.
- John M. Campbell, On the external path length of a Fibonacci tree.
- Y. Horibe, An entropy view of Fibonacci trees, Fibonacci Quarterly, 20(2) (1982), 168-178.
- S. Klavzar and M. Mollard, Asymptotic properties of Fibonacci cubes and Lucas cubes, HAL Id: hal-00836788, 2013.
- S. Klavzar and M. Mollard, Asymptotic properties of Fibonacci cubes and Lucas cubes, Ann. Comb. 18 (2014), 447-457.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
-
[((7*n+10)*Fibonacci(n+1)+4*(n+1)*Fibonacci(n))/5: n in [0..40]]; // Vincenzo Librandi, Jan 02 2016
-
f:= gfun:-rectoproc({a(n) = 2*a(n-1)+a(n-2) - 2*a(n-3)-a(n-4),a(0)=2,a(1)=5,a(2)=12,a(3)=25},a(n),remember):
map(f, [$0..50]); # Robert Israel, Jan 06 2016
-
LinearRecurrence[{2, 1, -2, -1}, {2, 5, 12, 25}, 70] (* Vincenzo Librandi, Jan 02 2016 *)
Table[SeriesCoefficient[(2 + x)/(1 - x - x^2)^2, {x, 0, n}], {n, 0, 34}] (* Michael De Vlieger, Jan 02 2016 *)
Print[Table[Sum[Binomial[n + 3 - i, i]*(n + 2 - 2*i), {i, 0, Floor[(n + 3)/2]}], {n, 0, 100}]] (* John M. Campbell, Jan 04 2016 *)
Module[{nn=40,fibs},fibs=Fibonacci[Range[nn]];Table[ListConvolve[Take[ fibs,n],Take[fibs,{2,n+2}]],{n,nn-2}]][[All,2]] (* Harvey P. Dale, Aug 03 2019 *)
-
Vec((2+x)/(1-x-x^2)^2 + O(x^100)) \\ Altug Alkan, Jan 04 2016
A067330
Triangle read by rows of incomplete convolutions of Fibonacci numbers F(n+1) = A000045(n+1), n>=0.
Original entry on oeis.org
1, 1, 2, 2, 3, 5, 3, 5, 7, 10, 5, 8, 12, 15, 20, 8, 13, 19, 25, 30, 38, 13, 21, 31, 40, 50, 58, 71, 21, 34, 50, 65, 80, 96, 109, 130, 34, 55, 81, 105, 130, 154, 180, 201, 235, 55, 89, 131, 170, 210, 250, 289, 331, 365, 420, 89, 144, 212, 275, 340, 404, 469, 532, 600, 655, 744, 144, 233, 343, 445
Offset: 0
{1}; {1,2}; {2,3,5}; {3,5,7,10}; ...; p(2,n)= 2+3*x+5*x^2.
Cf.
A067418 (triangle with rows read backwards).
-
Table[Sum[Fibonacci[k + 1] Fibonacci[n - k + 1], {k, 0, m}], {n, 0, 11}, {m, 0, n}] // Flatten (* Michael De Vlieger, Apr 11 2016 *)
A067990
Triangle A067979 with rows read backwards.
Original entry on oeis.org
1, 6, 3, 17, 13, 4, 38, 31, 19, 7, 80, 69, 48, 32, 11, 158, 140, 107, 79, 51, 18, 303, 274, 220, 176, 127, 83, 29, 566, 519, 432, 360, 283, 206, 134, 47, 1039, 963, 822, 706, 580, 459, 333, 217, 76, 1880, 1757, 1529, 1341, 1138, 940, 742, 539, 351, 123, 3364, 3165, 2796, 2492, 2163, 1844, 1520, 1201
Offset: 0
{1}; {6,3}; {17,13,4}; {38,31,19,7}; ...; p(2,x)=17+13*x+4*x^2.
-
Reverse /@ Table[Sum[LucasL[k + 1] LucasL[n - k + 1], {k, 0, m}], {n, 0, 11}, {m, 0, n}] // Flatten (* Michael De Vlieger, Apr 11 2016 *)
A067430
Convolution of Fibonacci F(n+1), n>=0, with F(n+7), n>=0.
Original entry on oeis.org
13, 34, 81, 170, 340, 654, 1227, 2258, 4095, 7340, 13032, 22956, 40169, 69890, 121005, 208606, 358268, 613242, 1046535, 1781170, 3024123, 5123104, 8661456, 14616600, 24624325, 41419234, 69568137, 116690258
Offset: 0
A067977
Convolution of Fibonacci F(n+1), n>=0, with F(n+9), n>=0.
Original entry on oeis.org
34, 89, 212, 445, 890, 1712, 3212, 5911, 10720, 19215, 34116, 60096, 105158, 182965, 316780, 546113, 937918, 1605424, 2739760, 4662995, 7916984, 13412019, 22675272, 38265600, 64465450, 108433937
Offset: 0
-
CoefficientList[Series[(34 + 21*x)/(1 - x - x^2)^2, {x, 0, 30}], x] (* Wesley Ivan Hurt, Feb 16 2017 *)
LinearRecurrence[{2,1,-2,-1},{34,89,212,445},30] (* Harvey P. Dale, Dec 22 2022 *)
A067332
Convolution of Fibonacci F(n+1), n>=0, with F(n+4), n>=0.
Original entry on oeis.org
3, 8, 19, 40, 80, 154, 289, 532, 965, 1730, 3072, 5412, 9471, 16480, 28535, 49196, 84496, 144638, 246845, 420140, 713353, 1208518, 2043264, 3448200, 5809275, 9771704, 16413019, 27530992, 46122320
Offset: 0
-
Table[((11n+15)Fibonacci[n+1]+7(n+1)Fibonacci[n])/5,{n,0,30}] (* or *) LinearRecurrence[{2,1,-2,-1},{3,8,19,40},30] (* Harvey P. Dale, Aug 25 2014 *)
A067333
Convolution of Fibonacci F(n+1), n>=0, with F(n+5), n>=0.
Original entry on oeis.org
5, 13, 31, 65, 130, 250, 469, 863, 1565, 2805, 4980, 8772, 15349, 26705, 46235, 79705, 136886, 234302, 399845, 680515, 1155385, 1957293, 3309096, 5584200, 9407525, 15823765, 26577559, 44579633, 74681770
Offset: 0
A067334
Convolution of Fibonacci F(n+1), n>=0, with F(n+6), n>=0.
Original entry on oeis.org
8, 21, 50, 105, 210, 404, 758, 1395, 2530, 4535, 8052, 14184, 24820, 43185, 74770, 128901, 221382, 378940, 646690, 1100655, 1868738, 3165811, 5352360, 9032400, 15216800, 25595469, 42990578, 72110625, 120804090, 202142180, 337876622, 564176619, 941141410
Offset: 0
-
CoefficientList[Series[(8+5x)/(1-x-x^2)^2,{x,0,40}],x] (* or *) LinearRecurrence[{2,1,-2,-1},{8,21,50,105},40] (* Harvey P. Dale, Apr 07 2012 *)
Showing 1-10 of 12 results.
Comments