cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067497 Smallest k for which 2^k is n+1 decimal digits long, and equivalently numbers k such that 1 is the first digit of 2^k.

Original entry on oeis.org

0, 4, 7, 10, 14, 17, 20, 24, 27, 30, 34, 37, 40, 44, 47, 50, 54, 57, 60, 64, 67, 70, 74, 77, 80, 84, 87, 90, 94, 97, 100, 103, 107, 110, 113, 117, 120, 123, 127, 130, 133, 137, 140, 143, 147, 150, 153, 157, 160, 163, 167, 170, 173, 177, 180, 183, 187, 190, 193, 196
Offset: 0

Views

Author

Benoit Cloitre, Feb 22 2002

Keywords

Comments

The asymptotic density of this sequence is log_10(2) = 0.301029... (A007524). - Amiram Eldar, Jan 27 2021

Crossrefs

Programs

  • GAP
    Filtered([0..200],n->ListOfDigits(2^n)[1]=1); # Muniru A Asiru, Oct 22 2018
    
  • Mathematica
    a[n_] := Block[{k = 0}, While[ Floor[Log[10, 2^k] + 1] < n, k++ ]; k]; Table[ a[n], {n, 1, 61}]
    Table[Ceiling[n*Log[2, 10]], {n, 0, 59}] (* Jean-François Alcover, Jan 29 2014, after Vladeta Jovovic *)
  • PARI
    for(n=0,500, if(floor(2^n/10^(floor(n*log(2)/log(10))))==1,print1(n,", ")))
    
  • PARI
    a(n) = ceil(n*log(10)/log(2)); \\ Michel Marcus, May 13 2017
    
  • Python
    def A067497(n): return (10**n-1).bit_length() # Chai Wah Wu, Apr 02 2023
    
  • Sage
    [ceil(n*log(10)/log(2)) for n in range(0, 60)] # Stefano Spezia, Aug 31 2024

Formula

a(n) = ceiling(n*log_2(10)). - Vladeta Jovovic, Jun 20 2002
a(n) = log_2(A067488(n+1)). - Charles L. Hohn, Jun 09 2024

Extensions

Additional comments from Lekraj Beedassy, Jun 20 2002 and from Rick Shephard, Jun 27 2002