cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A070689 Numbers k such that k+1 and k^2+1 are primes.

Original entry on oeis.org

1, 2, 4, 6, 10, 16, 36, 40, 66, 126, 130, 150, 156, 180, 210, 240, 250, 256, 270, 280, 306, 396, 400, 420, 430, 466, 490, 556, 570, 576, 646, 690, 700, 750, 760, 826, 906, 910, 936, 946, 966, 1060, 1096, 1150, 1276, 1290, 1306, 1320, 1366, 1566, 1570
Offset: 1

Views

Author

Robert G. Wilson v, May 13 2002

Keywords

Comments

For any n > 1 in this sequence, (n+1)*(n^2+1) has the same nonzero digits as its prime factors in base n. - Ely Golden, Dec 12 2016

Crossrefs

Cf. A067720.

Programs

  • Mathematica
    Select[ Range[2000], PrimeQ[ # + 1] && PrimeQ[ #^2 + 1] & ]
    Select[Prime[Range[250]],PrimeQ[(#-1)^2+1]&]-1 (* Harvey P. Dale, Feb 10 2022 *)
  • PARI
    list(lim)=my(v=List()); forprime(p=2,lim+1, if(isprime(1+(p-1)^2), listput(v,p-1))); Vec(v) \\ Charles R Greathouse IV, Dec 13 2016

A127435 Primes p such that (p-1)^2 + 1 is prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 37, 41, 67, 127, 131, 151, 157, 181, 211, 241, 251, 257, 271, 281, 307, 397, 401, 421, 431, 467, 491, 557, 571, 577, 647, 691, 701, 751, 761, 827, 907, 911, 937, 947, 967, 1061, 1097, 1151, 1277, 1291, 1307, 1321, 1367, 1567, 1571, 1861
Offset: 1

Views

Author

Lekraj Beedassy, Jan 14 2007

Keywords

Comments

Consists of 3 and a subsequence of A045349.
These are the primes of the form A067720(k)+1. - Michel Marcus, Nov 21 2020

Crossrefs

For the associated primes, see A127436.

Programs

  • Magma
    [p: p in PrimesUpTo(2000) | IsPrime((p^2-2*p+2))]; // Vincenzo Librandi, Jul 20 2025
  • Mathematica
    Select[Prime@Range[300], PrimeQ[(# - 1)^2 + 1] &] (* Ray Chandler, Jan 23 2007 *)
  • PARI
    listp(nn) = {forprime(p=2, nn, if (isprime((p-1)^2 + 1), print1(p, ", ")););} \\ Michel Marcus, Jun 08 2016
    

Formula

a(n) = sqrt(A127436(n)-1) + 1.

Extensions

Corrected and extended by Ray Chandler, Jan 23 2007

A333169 a(n) = phi(n^2 + 1), where phi is the Euler totient function (A000010).

Original entry on oeis.org

1, 1, 4, 4, 16, 12, 36, 20, 48, 40, 100, 60, 112, 64, 196, 112, 256, 112, 240, 180, 400, 192, 384, 208, 576, 312, 676, 288, 624, 420, 832, 432, 800, 432, 1056, 612, 1296, 544, 1088, 760, 1600, 812, 1408, 720, 1776, 1012, 2016, 768, 1840, 1200, 2400, 1300, 2160
Offset: 0

Views

Author

Amiram Eldar, Mar 09 2020

Keywords

Examples

			a(0) = phi(0^2 + 1) = phi(1) = 1.
		

References

  • Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 166.

Crossrefs

Programs

  • Mathematica
    Table[EulerPhi[k^2 + 1], {k, 0, 100}]
  • PARI
    a(n) = eulerphi(n^2+1); \\ Michel Marcus, Mar 10 2020

Formula

a(n) = A000010(A002522(n)).
Showing 1-3 of 3 results.