A067813
Start of a record-breaking run of consecutive integers with a number of prime factors (counted with multiplicity) equal to 3.
Original entry on oeis.org
8, 27, 170, 602, 2522, 211673
Offset: 1
a(4)=602 because 602 is the start of a record breaking run of 5 consecutive integers (602 to 606) each having 3 prime factors; i.e. bigomega(n)=A001222(n)=3 for n = 602, ..., 606.
-
bigomega[n_] := Plus@@Last/@FactorInteger[n]; For[n=1; m=l=0, True, n++, If[bigomega[n]==3, l++, If[l>m, m=l; Print[n-l, " ", l]]; l=0]]
Module[{nn=8,po},po=PrimeOmega[Range[5000000]];Flatten[Table[ SequencePosition[ po,PadRight[{},n,3],1],{n,nn}],1]][[All,1]]//Union (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 14 2019 *)
-
show(lim)=my(was,r,ct); forfactored(n=2, lim\1+1, is=vecsum(n[2][, 2])==3; if(is, ct++; if(ct>r, r=ct; print(r" "n[1]-r+1)),ct=0)) \\ Charles R Greathouse IV, Jun 26 2019
A067820
The start of a record-breaking run of consecutive integers with a number of prime factors (counted with multiplicity) equal to 5.
Original entry on oeis.org
32, 944, 15470, 57967, 632148, 14845324, 69921004, 888781058, 2674685524, 10077383364, 21117216104, 393370860205, 3157222675953, 5509463413255, 24819420480104, 361385490681003, 441826936079342
Offset: 1
a(3)=15470 because 15470 is the start of a record breaking run of 3 consecutive integers (15470 to 15472) each having 5 prime factors; i.e. bigomega(n)=A001222(n)=5 for n = 15470, ..., 15472.
-
bigomega[n_] := Plus@@Last/@FactorInteger[n]; For[n=1; m=l=0, True, n++, If[bigomega[n]==5, l++, If[l>m, m=l; Print[n-l, " ", l]]; l=0]]
Table[SequencePosition[PrimeOmega[Range[15*10^6]],PadRight[{},n,5],1][[All,1]],{n,6}]//Flatten (* The program generates the first six terms of the sequence. *) (* Harvey P. Dale, Sep 03 2022 *)
A067814
The start of a record-breaking run of consecutive integers with a number of prime factors (counted with multiplicity) equal to 4.
Original entry on oeis.org
16, 135, 1274, 4023, 12122, 204323, 355923, 3405122, 49799889, 202536181, 3195380868, 5208143601, 85843948321, 97524222465
Offset: 1
a(4)=4023 because 4023 is the start of a record breaking run of 4 consecutive integers (4023 to 4026) each having 4 prime factors; i.e. bigomega(n)=A001222(n)=4 for n = 4023, ..., 4026.
-
bigomega[n_] := Plus@@Last/@FactorInteger[n]; For[n=1; m=l=0, True, n++, If[bigomega[n]==4, l++, If[l>m, m=l; Print[n-l, " ", l]]; l=0]]
More terms from
Don Reble, Aug 11 2002, who remarks that the sequence is now complete.
A067822
The start of a record-breaking run of consecutive integers with a number of prime factors equal to 7.
Original entry on oeis.org
128, 29888, 3145310, 296299374, 15605704374, 242576758750, 1981162639374, 126460514648223
Offset: 1
a(3) = 3145310 because 3145310 is the start of a record breaking run of 3 consecutive integers (3145310 to 3145312) each having 7 prime factors; i.e., bigomega(n) = A001222(n) = 7 for n = 3145310, ..., 3145312.
-
bigomega[n_] := Plus@@Last/@FactorInteger[n]; For[n=1; m=l=0, True, n++, If[bigomega[n]==7, l++, If[l>m, m=l; Print[n-l, " ", l]]; l=0]]
A117969
Start of least run of maximal length of consecutive n-almost primes.
Original entry on oeis.org
2, 33, 211673, 97524222465
Offset: 1
a(2) = 33 because 33, 34, 35 is the least run of three consecutive 2-almost primes (semiprimes).
A337463
Numbers k such that k, k+1, k+2 and k+3 are products of 6 primes (A046306).
Original entry on oeis.org
8706123, 24463374, 32442848, 32942943, 36782289, 48580623, 55486248, 57476573, 59600365, 59757774, 62481222, 62664810, 62884590, 63262374, 63728124, 64724373, 65159575, 65450824, 69362487, 70302087, 70370223, 70785924, 71494773, 72060272, 72503682, 73256910, 73638422, 74066874, 74361858
Offset: 1
8706123 = 3^4*19*5657, 8706124 = 2*2*7*7*43*1033,
8706125 = 5^3*17*17*241, 8706126 = 2*3*11*13*73*139.
-
for(k=2^6,75000000,my(found=1);for(j=0,3,if(bigomega(k+j)!=6,found=0;break));if(found,print1(k,", "))) \\ Hugo Pfoertner, Oct 21 2020
Showing 1-6 of 6 results.
Comments