A067872 Least m > 0 for which m*n^2 + 1 is a square.
3, 2, 7, 3, 23, 8, 47, 15, 79, 24, 119, 2, 167, 48, 3, 63, 287, 80, 359, 6, 88, 120, 527, 28, 623, 168, 727, 12, 839, 44, 959, 255, 216, 288, 8, 20, 1367, 360, 19, 77, 1679, 22, 1847, 30, 208, 528, 2207, 7, 2399, 624, 128, 42, 2807, 728, 696, 3, 160, 840, 3479, 11
Offset: 1
Examples
a(4)=3, based on 3*4^2 + 1 = 7^2.
Links
- T. D. Noe and Chai Wah Wu, Table of n, a(n) for n = 1..10000 n = 1..500 from T. D. Noe
- Bill McEachen, Plot of gpf(sequence terms)
Programs
-
Haskell
a067872 n = (until ((== 1) . a010052 . (+ 1)) (+ nn) nn) `div` nn where nn = n ^ 2 -- Reinhard Zumkeller, Jun 28 2013
-
Mathematica
a[n_] := For[m=1, True, m++, If[IntegerQ[Sqrt[m*n^2+1]], Return[m]]]; Table[a[n], {n, 100}] lm[n_]:=Module[{m=1},While[!IntegerQ[Sqrt[m n^2+1]],m++];m]; Array[lm,60] (* Harvey P. Dale, Feb 24 2013 *)
-
Python
def A067872(n): y, x, n2 = n*(n+2), 2*n+3, n**2 m, r = divmod(y,n2) while r: y += x x += 2 m, r = divmod(y,n2) return m # Chai Wah Wu, Jan 25 2016
Formula
For n a power of an odd prime, a(n) = n^2 - 2. For n twice a power of an odd prime, a(n) = (n/2)^2 - 1. - T. D. Noe, Sep 13 2007
Extensions
Edited by Dean Hickerson, Mar 19 2002
Comments