cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A073742 Decimal expansion of sinh(1).

Original entry on oeis.org

1, 1, 7, 5, 2, 0, 1, 1, 9, 3, 6, 4, 3, 8, 0, 1, 4, 5, 6, 8, 8, 2, 3, 8, 1, 8, 5, 0, 5, 9, 5, 6, 0, 0, 8, 1, 5, 1, 5, 5, 7, 1, 7, 9, 8, 1, 3, 3, 4, 0, 9, 5, 8, 7, 0, 2, 2, 9, 5, 6, 5, 4, 1, 3, 0, 1, 3, 3, 0, 7, 5, 6, 7, 3, 0, 4, 3, 2, 3, 8, 9, 5, 6, 0, 7, 1, 1, 7, 4, 5, 2, 0, 8, 9, 6, 2, 3, 3, 9, 1, 8, 4, 0, 4, 1
Offset: 1

Views

Author

Rick L. Shepherd, Aug 07 2002

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 14 2019
Decimal expansion of u > 0 such that 1 = arclength on the hyperbola y^2 - x^2 = 1 from (0,0) to (u,y(u)). - Clark Kimberling, Jul 04 2020

Examples

			1.17520119364380145688238185059...
		

References

  • S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 218.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 2, equation 2:5:7 at page 20.

Crossrefs

Cf. A068139 (continued fraction), A073743, A073744, A073745, A073746, A073747, A049469, A049470, A174548.

Programs

  • Mathematica
    First@ RealDigits@ N[Sinh@ 1, 120] (* Michael De Vlieger, Sep 04 2016 *)
  • PARI
    sinh(1)

Formula

Equals (e - e^(-1))/2.
Equals sin(i)/i. - N. J. A. Sloane, Feb 12 2010
Equals Sum_{n>=0} 1/A009445(n). See Gradsteyn-Ryzhik (0.245.6.) - R. J. Mathar, Oct 27 2012
Continued fraction representation: sinh(1) = 1 + 1/(6 - 6/(21 - 20/(43 - 42/(73 - ... - (2*n - 1)*(2*n - 2)/((2*n*(2*n + 1) + 1) - ... ))))). See A051397 for proof. Cf. A049469. - Peter Bala, Sep 02 2016
Equals Product_{k>=1} 1 + 1/(k * Pi)^2. - Amiram Eldar, Jul 16 2020
Equals 1/A073745 = A174548/2. - Hugo Pfoertner, Dec 27 2024

A073745 Decimal expansion of csch(1).

Original entry on oeis.org

8, 5, 0, 9, 1, 8, 1, 2, 8, 2, 3, 9, 3, 2, 1, 5, 4, 5, 1, 3, 3, 8, 4, 2, 7, 6, 3, 2, 8, 7, 1, 7, 5, 2, 8, 4, 1, 8, 1, 7, 2, 4, 6, 6, 0, 9, 1, 0, 3, 3, 9, 6, 1, 6, 9, 9, 0, 4, 2, 1, 1, 5, 1, 7, 2, 9, 0, 0, 3, 3, 6, 4, 3, 2, 1, 4, 6, 5, 1, 0, 3, 8, 9, 9, 7, 3, 0, 1, 7, 7, 3, 2, 8, 8, 9, 3, 8, 1, 2, 3, 6, 2, 4, 4
Offset: 0

Views

Author

Rick L. Shepherd, Aug 07 2002

Keywords

Comments

csch(x) = 2/(e^x - e^(-x)).
By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 14 2019

Examples

			0.85091812823932154513384276328...
		

References

  • Samuel M. Selby (ed.), CRC Basic Mathematical Tables, CRC Press, 1970, p. 218.

Crossrefs

Cf. A068139 (continued fraction), A073742 (sinh(1)=1/A073745), A073743 (cosh(1)), A073744 (tanh(1)), A073746 (sech(1)), A073747 (coth(1)).

Programs

  • Mathematica
    RealDigits[Csch[1], 10, 100][[1]] (* Amiram Eldar, May 15 2021 *)
  • PARI
    1/sinh(1)

Formula

Equals Sum_{k>=0} B(2*k) * (2 - 2^(2*k)) / (2*k)!, where B(k) is the k-th Bernoulli number. - Amiram Eldar, May 15 2021

A068118 Continued fraction expansion for cosh(1).

Original entry on oeis.org

1, 1, 1, 5, 3, 3, 2, 1, 21, 1, 1, 1, 4, 2, 1, 48, 71, 7, 1, 1, 9, 1, 2, 1, 11, 1, 5, 1, 2, 3, 2, 2, 2, 1, 1, 2, 10, 1, 1, 5, 26, 1, 25, 1, 2, 1, 5, 1, 2, 2, 7, 1, 1, 8, 8, 2, 1, 7, 2, 1, 9, 1, 3, 1, 4, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 5, 1, 1, 3, 1, 1, 1, 3, 7, 183
Offset: 0

Views

Author

Benoit Cloitre, Mar 13 2002

Keywords

Comments

If an extra zero is added to the beginning of this sequence, continued fraction for sech(1) = 1/cosh(1). - Rick L. Shepherd, Aug 07 2002

Crossrefs

Cf. A068139, A073743 (decimal expansion), A073746 (decimal expansion of sech(1)).
Cf. A078982, A078983 (convergents).

Programs

  • Mathematica
    ContinuedFraction[Cosh[1],90] (* Harvey P. Dale, Apr 29 2013 *)

Extensions

Offset changed by Andrew Howroyd, Aug 05 2024

A078980 Numerators of continued fraction convergents to sinh(1).

Original entry on oeis.org

1, 6, 7, 20, 47, 114, 161, 436, 3213, 16501, 19714, 36215, 55929, 148073, 352075, 6837498, 7189573, 21216644, 28406217, 220060163, 248466380, 468526543, 4465205267, 4933731810, 19266400697, 24200132507, 43466533204, 111133198915
Offset: 0

Views

Author

Benoit Cloitre, Dec 20 2002

Keywords

Crossrefs

Cf. A068139 (continued fraction), A073742 (decimal expansion), A078981 (denominators).

Programs

  • Mathematica
    Numerator[Convergents[Sinh[1],30]] (* Harvey P. Dale, May 09 2013 *)
  • PARI
    a(n)=component(component(contfracpnqn(contfrac(sinh(1),n+1)),1),1)

Extensions

Offset changed by Andrew Howroyd, Aug 05 2024

A078981 Denominators of continued fraction convergents to sinh(1).

Original entry on oeis.org

1, 5, 6, 17, 40, 97, 137, 371, 2734, 14041, 16775, 30816, 47591, 125998, 299587, 5818151, 6117738, 18053627, 24171365, 187253182, 211424547, 398677729, 3799524108, 4198201837, 16394129619, 20592331456, 36986461075, 94565253606
Offset: 0

Views

Author

Benoit Cloitre, Dec 20 2002

Keywords

Crossrefs

Cf. A068139 (continued fraction), A073742 (decimal expansion), A078980 (numerators).

Programs

  • Mathematica
    Convergents[Sinh[1],30]//Denominator (* Harvey P. Dale, Apr 17 2022 *)
  • PARI
    a(n)=component(component(contfracpnqn(contfrac(sinh(1),n+1)),1),2)

Extensions

Offset changed by Andrew Howroyd, Aug 05 2024
Showing 1-5 of 5 results.