A068156 G.f.: (x+2)*(x+1)/((x-1)*(x-2)) = Sum_{n>=0} a(n)*(x/2)^n.
1, 3, 9, 21, 45, 93, 189, 381, 765, 1533, 3069, 6141, 12285, 24573, 49149, 98301, 196605, 393213, 786429, 1572861, 3145725, 6291453, 12582909, 25165821, 50331645, 100663293, 201326589, 402653181, 805306365, 1610612733
Offset: 0
References
- Richard I. Hess, Compendium of Over 7000 Wire Puzzles, privately printed, 1991.
- Richard I. Hess, Analysis of Ring Puzzles, booklet distributed at 13th International Puzzle Party, Amsterdam, Aug 20 1993.
- S. Heubach, T. Mansour, in Combinatorics of Compositions and words, Discr. Math. Applicat. (ed by K H Rosen), CRC Press 2010, p 300.
- Warren W. Kokko, The Racer Dice Game, Manuscript, 2015.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Artur Schaefer, Endomorphisms of The Hamming Graph and Related Graphs, arXiv preprint arXiv:1602.02186 [math.CO], 2016. See Table Remark 4.5.
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Programs
-
Magma
[3*2^n+0^n-3 : n in [0..30]]; // Vincenzo Librandi, Nov 11 2011
-
Mathematica
Join[{1}, LinearRecurrence[{3, -2}, {3, 9}, 30]] (* Jean-François Alcover, Jan 08 2019 *) CoefficientList[Series[(1+2x^2)/((1-2x)(1-x)),{x,0,40}],x] (* Harvey P. Dale, Jan 02 2022 *)
-
Sage
def a(n): return 3*2**n+0**n-3 # Torlach Rush, Jan 09 2025
Formula
a(0) = 1, a(n) = A060482(2n+1). For n > 0, a(n+1) = 2*a(n)+3.
G.f.: (1+2*x^2)/((1-2*x)*(1-x)). - Paul Barry, Feb 28 2003
a(n) = 3*2^n+0^n-3. - Paul Barry, Sep 04 2003
a(n) = 3*a(n-1) - 2*a(n-2), n > 1. - Vincenzo Librandi, Nov 11 2011
a(n) = a(n-1)+ 3*2^(n-1); a(1)=3. - Ctibor O. Zizka, Apr 17 2008
E.g.f.: 1 + 3*(exp(x) - 1)*exp(x). - Ilya Gutkovskiy, May 22 2016
Comments