cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A366833 Number of times n appears in A362965 (number of primes <= the n-th prime power).

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Paolo Xausa, Oct 25 2023

Keywords

Comments

Conjecture: a(n) can be only 1, 2, or 3 (with the first occurrences of 3 appearing at n = 4, 9, 30, 327 and 3512).
One less than the number of prime powers between prime(n) and prime(n+1), inclusive. - Gus Wiseman, Jan 09 2025

Crossrefs

Run lengths of A362965.
Subtracting one gives A080101.
For non prime powers we have A368748.
Positions of terms > 1 are A377057.
Positions of 1 are A377286.
Positions of 2 are A377287.
For perfect powers we have A377432.
For squarefree we have A373198.
A000015 gives the least prime power >= n, difference A377282.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A024619 and A361102 list the non prime powers, differences A375708 and A375735.
A031218 gives the greatest prime power <= n, difference A276781.
A046933(n) counts the interval from A008864(n) to A006093(n+1).
A246655 lists the prime powers not including 1.
A366835 counts primes between prime powers.

Programs

  • Mathematica
    With[{upto=1000},Map[Length,Most[Split[PrimePi[Select[Range[upto],PrimePowerQ]]]]]] (* Considers prime powers up to 1000 *)

Formula

a(n) = A080101(n) + 1. - Gus Wiseman, Jan 09 2025

A366835 In the pair (A246655(n), A246655(n+1)), how many primes are there?

Original entry on oeis.org

2, 1, 1, 2, 1, 0, 1, 2, 1, 1, 2, 2, 1, 0, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2
Offset: 1

Views

Author

Paolo Xausa, Oct 25 2023

Keywords

Comments

First 0 terms appear at n = 6, 14, 41, 359, 3589, corresponding to consecutive prime powers (8,9), (25,27), (121,125), (2187,2197) and (32761,32768), respectively (cf. A068315 and A068435).
There cannot be primes strictly between consecutive prime powers, so we get the same result considering the whole interval (not just the pair). - Gus Wiseman, Dec 25 2024

Examples

			a(1) = 2 because in the first prime power pair (2 and 3) there are two primes.
a(14) = 0 because in the 14th prime power pair (25 and 27) there are no primes.
		

Crossrefs

For perfect powers instead of prime powers we have A080769.
Positions of 1 are A379155, indices of A379157.
Positions of 0 are A379156, indices of A068315.
Positions of 2 are A379158, indices of A379541.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A031218 gives the greatest prime power <= n.
A065514 gives the greatest prime power < prime(n), difference A377289.
A080101 and A366833 count prime powers between primes, see A053607, A304521.
A246655 lists the prime powers, differences A057820.

Programs

  • Mathematica
    With[{upto=500},Map[Count[#,_?PrimeQ]&,Partition[Select[Range[upto],PrimePowerQ],2,1]]] (* Considers prime powers up to 500 *)
  • PARI
    lista(nn) = my(v=[p| p <- [1..nn], isprimepower(p)]); vector(#v-1, k, isprime(v[k]) + isprime(v[k+1])); \\ Michel Marcus, Oct 26 2023

A116086 Perfect powers n with no primes between n and the next larger perfect power, which is in A116455.

Original entry on oeis.org

8, 25, 32, 121, 2187, 3125, 32761, 79507, 97336, 503284356
Offset: 1

Views

Author

T. D. Noe, Mar 28 2006

Keywords

Comments

No other n<10^12. There is a conjecture that this sequence is finite.
No other terms < 10^18. - Jud McCranie, Nov 03 2013
No other terms < 4.5*10^18. - Giovanni Resta, Apr 28 2014

Examples

			The prime-free ranges are (2^3,3^2), (5^2,3^3), (2^5,6^2), (11^2,5^3), (3^7,13^3), (5^5,56^2), (181^2,2^15), (43^3,282^2), (46^3,312^2), (22434^2,55^5).
		

Crossrefs

Cf. A001597 (perfect powers), A116455.
Cf. A068435 (for prime powers).

Programs

  • Mathematica
    lim=10^12; lst={}; k=2; While[n=Floor[lim^(1/k)]; n>=2, lst=Join[lst,Range[2,n]^k]; k++ ]; lst=Union[lst]; PrimeFree[n1_,n2_] := Module[{n=n1+1}, While[n
    				

A068315 For numbers k such that A025474(k) > 1 and A025474(k+1) > 1, sequence gives A000961(k).

Original entry on oeis.org

8, 25, 121, 2187, 32761
Offset: 1

Views

Author

Naohiro Nomoto, Mar 08 2002

Keywords

Comments

Equivalently, prime powers (either A000961 or A246655) q such that q and the next prime power are both composite numbers. - Paolo Xausa, Oct 25 2023

Examples

			The interval (121,122,123,124,125) contains no primes, so 121 is in the sequence. - _Gus Wiseman_, Dec 24 2024
		

Crossrefs

Bisection of A068435.
For perfect powers instead of prime powers we have A116086, indices A274605.
The position of a(k) in the prime powers A246655 is A379156(k).
For just one prime we have A379157, indices A379155.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A031218 gives the greatest prime power <= n.
A046933 gives run-lengths of composites between primes.
A065514 gives the greatest prime power < prime(n), difference A377289.
A246655 lists the prime powers, differences A057820.
A366833 counts prime powers between primes, see A053607, A304521.
A366835 counts primes between prime powers.

Programs

  • Mathematica
    With[{upto=33000},Map[First,Select[Partition[Select[Range[upto],PrimePowerQ],2,1],NoneTrue[#,PrimeQ]&]]] (* Paolo Xausa, Oct 25 2023 *)

Formula

a(n) = A246655(A379156(n)). - Gus Wiseman, Dec 24 2024

Extensions

Definition corrected by Jinyuan Wang, Sep 05 2020

A116455 Perfect powers n with no primes between n and the next smaller perfect power, which is in A116086.

Original entry on oeis.org

9, 27, 36, 125, 2197, 3136, 32768, 79524, 97344, 503284375
Offset: 1

Views

Author

T. D. Noe, Mar 28 2006

Keywords

Comments

No other terms < 10^18. - Jud McCranie, Nov 03 2013
No other terms < 4.5*10^18. - Giovanni Resta, Apr 28 2014

Crossrefs

Cf. A001597 (perfect powers), A116086.
Cf. A068435 (for prime powers).

A060846 Smallest prime > the n-th nontrivial power of a prime.

Original entry on oeis.org

5, 11, 11, 17, 29, 29, 37, 53, 67, 83, 127, 127, 131, 173, 251, 257, 293, 347, 367, 521, 541, 631, 733, 853, 967, 1031, 1361, 1373, 1693, 1861, 2053, 2203, 2203, 2213, 2411, 2819, 3137, 3491, 3727, 4099, 4493, 4919, 5051, 5333, 6247, 6563, 6863, 6899, 7927
Offset: 1

Views

Author

Labos Elemer, May 03 2001

Keywords

Examples

			78125=5^7 is followed by 78137.
		

Crossrefs

Programs

  • Mathematica
    NextPrime[Select[Range[10^4], !PrimeQ[#] && PrimePowerQ[#] &]] (* Amiram Eldar, Oct 04 2024 *)
  • PARI
    ispp(x) = !isprime(x) && isprimepower(x);
    lista(nn) = apply(x->nextprime(x), select(x->ispp(x), [1..nn])); \\ Michel Marcus, Aug 24 2019
    
  • Python
    from sympy import primepi, integer_nthroot, nextprime
    def A060846(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length())))
        return nextprime(bisection(f,n,n)) # Chai Wah Wu, Sep 15 2024

Formula

a(n) = nextprime(A025475(n+1)) = A007918(A025475(n+1)) = Min{p| p>A025475(n+1)}. [corrected by Michel Marcus, Aug 24 2019]
Showing 1-6 of 6 results.