cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A068481 Numbers k such that gcd(k!+1, 2^k+1) > 1.

Original entry on oeis.org

5, 9, 21, 33, 65, 81, 89, 113, 173, 209, 221, 245, 261, 281, 285, 309, 341, 345, 369, 393, 473, 509, 525, 545, 561, 593, 645, 725, 749, 785, 789, 833, 861, 873, 933, 953, 965, 1001, 1065, 1101, 1113, 1173, 1185, 1265, 1289, 1329, 1341, 1401, 1409, 1469
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Crossrefs

Cf. A000051 (2^n+1), A038507 (n!+1).

Programs

  • GAP
    Filtered([1..1470],n->Gcd(Factorial(n)+1,2^n+1)>1); # Muniru A Asiru, Oct 16 2018
  • Maple
    select(n->gcd(factorial(n)+1,2^n+1)>1,[$1..1470]); # Muniru A Asiru, Oct 16 2018
  • Mathematica
    Select[Range[2500], GCD[#! + 1, 2^# + 1] > 1 &] (* G. C. Greubel, Oct 15 2018 *)
  • PARI
    isok(n) = gcd(n!+1,2^n+1) > 1; \\ Michel Marcus, Oct 16 2018
    

A068483 Numbers n such that gcd(n!-1,2^n-1)>1.

Original entry on oeis.org

11, 15, 35, 75, 83, 111, 119, 135, 155, 179, 219, 231, 243, 323, 359, 375, 455, 459, 483, 491, 515, 519, 525, 531, 551, 611, 615, 639, 651, 663, 699, 719, 723, 735, 771, 779, 783, 803, 879, 915, 923, 939, 999, 1043, 1103, 1119, 1175, 1199, 1271, 1323
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Crossrefs

Cf. A000225 (2^n-1), A033312 (n!-1).

Programs

  • Mathematica
    Select[Range[2500], GCD[#! - 1, 2^# - 1] > 1 &] (* G. C. Greubel, Oct 15 2018 *)
  • PARI
    isok(n) = gcd(n!-1,2^n-1) > 1; \\ Michel Marcus, Oct 16 2018

A068482 Numbers n such that gcd(n!+1,2^n-1)>1.

Original entry on oeis.org

2, 3, 4, 6, 10, 12, 16, 18, 22, 23, 28, 30, 36, 39, 40, 42, 46, 51, 52, 58, 60, 63, 66, 70, 72, 78, 82, 88, 95, 96, 99, 100, 102, 106, 108, 112, 126, 130, 131, 135, 136, 138, 148, 150, 156, 162, 166, 172, 178, 180, 183, 190, 191, 192, 196, 198, 210, 215, 222, 226
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Comments

If n=p-1, p prime, then n is in the sequence.

Crossrefs

Cf. A000225 (2^n-1), A038507 (n!+1).

Programs

  • GAP
    Filtered([1..230],n->Gcd(Factorial(n)+1,2^n-1)>1); # Muniru A Asiru, Oct 16 2018
  • Maple
    select(n->gcd(factorial(n)+1,2^n-1)>1,[$1..230]); # Muniru A Asiru, Oct 16 2018
  • Mathematica
    Select[Range[300],GCD[#!+1,2^#-1]>1&] (* Harvey P. Dale, Jan 31 2015 *)
  • PARI
    isok(n) = gcd(n!+1,2^n-1) > 1; \\ Michel Marcus, Oct 16 2018
    

A133382 Numbers n such that gcd( n!-1, 2^n-1 ) is neither 1 nor 2n+1.

Original entry on oeis.org

75, 525, 3940
Offset: 1

Views

Author

M. F. Hasler, Oct 28 2007

Keywords

Comments

This subsequence of A068483 lists the rare exceptions for which gcd( N!, 2^N-1 ) <> 2N+1. Is it finite? Are all elements multiples of 5?

Crossrefs

Programs

  • PARI
    for(n=1,10^5,if((g=gcd(n!-1,2^n-1)-1) & g!=2*n,print(n", ")))
Showing 1-4 of 4 results.