cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A068480 Numbers n such that gcd(n!-1,2^n+1)>1.

Original entry on oeis.org

1, 29, 41, 53, 69, 105, 125, 141, 153, 165, 189, 233, 249, 273, 293, 321, 329, 405, 413, 429, 441, 453, 485, 581, 585, 629, 641, 653, 713, 729, 741, 761, 765, 809, 813, 849, 893, 905, 989, 993, 1005, 1013, 1041, 1049, 1089, 1121, 1125, 1133, 1169, 1205
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Crossrefs

Cf. A000051 (2^n+1), A033312 (n!-1).

Programs

  • GAP
    Filtered([1..1230],n->Gcd(Factorial(n)-1,2^n+1)>1); # Muniru A Asiru, Oct 16 2018
  • Maple
    select(n->gcd(factorial(n)-1,2^n+1)>1,[$1..1230]); # Muniru A Asiru, Oct 16 2018
  • Mathematica
    Select[Range[2500], GCD[#! - 1, 2^# + 1] > 1 &] (* G. C. Greubel, Oct 15 2018 *)
  • PARI
    isok(n) = gcd(n!-1, 2^n+1) > 1; \\ Michel Marcus, Oct 16 2018
    

A068483 Numbers n such that gcd(n!-1,2^n-1)>1.

Original entry on oeis.org

11, 15, 35, 75, 83, 111, 119, 135, 155, 179, 219, 231, 243, 323, 359, 375, 455, 459, 483, 491, 515, 519, 525, 531, 551, 611, 615, 639, 651, 663, 699, 719, 723, 735, 771, 779, 783, 803, 879, 915, 923, 939, 999, 1043, 1103, 1119, 1175, 1199, 1271, 1323
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Crossrefs

Cf. A000225 (2^n-1), A033312 (n!-1).

Programs

  • Mathematica
    Select[Range[2500], GCD[#! - 1, 2^# - 1] > 1 &] (* G. C. Greubel, Oct 15 2018 *)
  • PARI
    isok(n) = gcd(n!-1,2^n-1) > 1; \\ Michel Marcus, Oct 16 2018

A068482 Numbers n such that gcd(n!+1,2^n-1)>1.

Original entry on oeis.org

2, 3, 4, 6, 10, 12, 16, 18, 22, 23, 28, 30, 36, 39, 40, 42, 46, 51, 52, 58, 60, 63, 66, 70, 72, 78, 82, 88, 95, 96, 99, 100, 102, 106, 108, 112, 126, 130, 131, 135, 136, 138, 148, 150, 156, 162, 166, 172, 178, 180, 183, 190, 191, 192, 196, 198, 210, 215, 222, 226
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Comments

If n=p-1, p prime, then n is in the sequence.

Crossrefs

Cf. A000225 (2^n-1), A038507 (n!+1).

Programs

  • GAP
    Filtered([1..230],n->Gcd(Factorial(n)+1,2^n-1)>1); # Muniru A Asiru, Oct 16 2018
  • Maple
    select(n->gcd(factorial(n)+1,2^n-1)>1,[$1..230]); # Muniru A Asiru, Oct 16 2018
  • Mathematica
    Select[Range[300],GCD[#!+1,2^#-1]>1&] (* Harvey P. Dale, Jan 31 2015 *)
  • PARI
    isok(n) = gcd(n!+1,2^n-1) > 1; \\ Michel Marcus, Oct 16 2018
    

A067660 Values of gcd(k!+1,2^k+1) not equal to 1 taking k in increasing order.

Original entry on oeis.org

2, 11, 19, 43, 67, 131, 163, 179, 227, 347, 419, 443, 491, 523, 563, 571, 619, 683, 691, 739, 787, 947, 1019, 1051, 1091, 1123, 1187, 1291, 1451, 1499, 1571, 1579, 1667, 1723, 1747, 1867, 1907, 1931, 2003, 2131, 2203, 6043, 2347, 2371, 2531, 2579, 2659
Offset: 1

Views

Author

Benoit Cloitre, Feb 03 2002

Keywords

Crossrefs

Cf. A068481.

Programs

  • Mathematica
    Table[GCD[n!+1,2^n+1],{n,0,4000}]/.(1->Nothing) (* Harvey P. Dale, Aug 03 2018 *)
  • PARI
    for(k=0,3000,d=gcd(k!+1,2^k+1); if(d<>1,print1(d,",")))

Formula

If 2m+1 is prime and is in the sequence, 2m+1 = gcd(m!+1, 2^m+1).

Extensions

Corrected and extended by Rick L. Shepherd, May 20 2002
Offset corrected by Amiram Eldar, Jun 06 2022
Showing 1-4 of 4 results.