A082697
Numbers k such that (4*10^(k-1) - 7)/3 is a plateau prime.
Original entry on oeis.org
3, 5, 7, 95, 161, 361, 1471, 2899, 3095, 3113, 15699, 17957, 42263, 111033
Offset: 1
k=7 -> (4*10^(7-1) - 7)/3 = 1333331.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
A068651
Primes in which a string of 2's is sandwiched between two 9's.
Original entry on oeis.org
929, 9222229, 9222222222229
Offset: 1
A068650
Primes in which a string of 1's is sandwiched between two 3's.
Original entry on oeis.org
313, 3111111111113, 311111111111113, 3111111111111111111111111111113, 311111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111113
Offset: 1
-
a := 3:b := 1:i := 1:for n from 0 to 500 do c := a+10*(10^n-1)/9*b+10^(n+1)*a; if(isprime(c)) then d[i] := c; i := i+1; end if; end do:q := seq(d[j],j=1..i-1);
-
Select[Table[10*FromDigits[PadRight[{3},n,1]]+3,{n,2,110}],PrimeQ] (* Harvey P. Dale, Dec 18 2022 *)
A068646
Primes in which a string of 5's is sandwiched between two 1's.
Original entry on oeis.org
11, 151, 15551, 155555555555555555551, 155555555555555555555555555555551
Offset: 1
11 is also a member in which a string of 0 5's is there between two one's.
-
a := 1:b := 5:i := 1:for n from 0 to 500 do c := a+10*(10^n-1)/9*b+10^(n+1)*a; if(isprime(c)) then d[i] := c; i := i+1; end if; end do:q := seq(d[j],j=1..i-1);
-
Select[Table[FromDigits[Join[PadRight[{1},n,5],{1}]],{n,500}],PrimeQ] (* Harvey P. Dale, Aug 08 2012 *)
A068647
Primes in which a string of 6's is sandwiched between two 1's.
Original entry on oeis.org
11, 16661, 1666666666661, 16666666666666661, 1666666666666666661, 1666666666666666666666666666666666661, 16666666666666666666666666666666666666666666666666661
Offset: 1
11 is also a member in which a string of 0 6's is there between two one's.
-
Select[Table[10*FromDigits[PadRight[{1},n,6]]+1,{n,60}],PrimeQ] (* Harvey P. Dale, Jun 18 2021 *)
A068648
Primes in which a string of 8's is sandwiched between two 1's.
Original entry on oeis.org
11, 181, 188888881, 188888888888881, 18888888888888888888888888888888888888881, 188888888888888888888888888888888888888888888888888888888888888888888888888888888888888888881
Offset: 1
11 is also a member in which a string of 0 8's is there between two one's.
-
a := 1:b := 8:i := 1:for n from 0 to 500 do c := a+10*(10^n-1)/9*b+10^(n+1)*a; if(isprime(c)) then d[i] := c; i := i+1; end if; end do:q := seq(d[j],j=1..i-1);
-
Select[Table[10FromDigits[PadRight[{1},n,8]]+1,{n,100}],PrimeQ] (* Harvey P. Dale, Jul 08 2020 *)
A068649
Primes in which a string of 9's is sandwiched between two 1's.
Original entry on oeis.org
11, 191, 19991, 199999991, 19999999999999999999999999999999999999991, 199999999999999999999999999999999999999999999999999999999999999999999999999999999999991
Offset: 1
11 is also a member in which a string of 0 9's is there between two one's.
-
a := 1:b := 9:i := 1:for n from 0 to 500 do c := a+10*(10^n-1)/9*b+10^(n+1)*a; if(isprime(c)) then d[i] := c; i := i+1; end if; end do:q := seq(d[j],j=1..i-1);
-
Select[Table[FromDigits[Join[{1}, Table[9, {i}], {1}]], {i, 0, 200}], PrimeQ]
A056244
Indices of primes in sequence defined by A(0) = 11, A(n) = 10*A(n-1) + 21 for n > 0.
Original entry on oeis.org
0, 1, 3, 5, 93, 159, 359, 1469, 2897, 3093, 3111, 15697, 17955, 42261, 111031
Offset: 1
131 is prime, hence 1 is a term.
- Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
-
Do[If[PrimeQ[(1*10^n + 3*(10^n - 1)/9)*10 + 1], Print[n]], {n, 1, 2500}]
Select[Range[0, 2000], PrimeQ[(120 10^# - 21) / 9] &] (* Vincenzo Librandi, Nov 03 2014 *)
-
a=11;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a+21)
-
for(n=0,1500,if(isprime((120*10^n-21)/9),print1(n,",")))
More terms and additional comments from
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 28 2004
Updates from De Geest site by Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008
Showing 1-8 of 8 results.
Comments